
Cryptographic Contact Tracing

Lecture Notes

draft of June 29, 2020

1 Introduction

Contact tracing is the process through which a person who is diagnosed with an infectious dis-
ease can notify people who he interacted with in a specific time window (i.e his contacts). The
recent spread of COVID-19 has drawn attention to contact tracing as an effective mitigation
of the spread, with strong interest in a way to automate the process.

An automated process would require some sort of logging to take place, as notifications
need to be made to people with whom the infected interacted with in the past. As such, it is
only natural that safeguards are built into such a system, so as not to leak any information
other than what is strictly necessary.

We will begin with describing the protocols of such a system and their general operation,
before stating security requirements and definitions, or suggesting a candidate design.

High-Level Description:
A Cryptographic Contact Tracing (CCT) system consists of a central server and three

protocols:

• Contact: a protocol which is run between users (or their phones), with the purpose of
(localy) recording each meeting by users of the system.

• Scan: a protocol run between a user and the server, with a purpose of notifying the
user if one of his past meetings was with a newly diagnosed person.

• Notify: a protocol that allows users to notify the server that they have recently been
diagnosed.

As a starting assumption, we think that the server is honest but curious, and that the
notify procotol is augmented with some out of band system that verifies infection (e.g. via a
registered medical professional).

2 Syntax of a CCT protocol

2.1 Contact

The contact protocol is run between users to keep track of contacts between each other.

1



• Initialization: Contact(1λ, ε)→ st0: Initialises a new state st0 with keysize λ

• Update: Contact(st, ε)→ (st′,msg′) When run with an empty second argument, Contact
updates its state and produces a new message for broadcasting.

• Store: Contact(st,msg) → st′ Upon receiving a message msg from another user, it is
used to update the state.

Intended use: Alice first initialises her state, and runs update in regular intervals. At
the same time she is broadcasting the last msg she has produced. When receiving a message
from other users, she uses the store interface.

2.2 Scan

Scan is a protocol that is run after contacting the server to obtain a reply τ . The result
depends on the servers reported state τ .

Scan(vk, st, τ) : output 0 or 1

Intended use: When Alice wants to check if she is at risk, she asks the server for a scan
file, and the sever replies with τ . Alice locally runs Scan(vk, st, τ) → 0/1 with 1 meaning
one of her recent contacts has been diagnosed positive. The vk is assumed to be available to
Alice ahead of time.

2.3 Notify

The Notify protocol used to inform the server that a user has been diagnosed as infected. It
has three interfaces:

• Server Initialization Notify.Server(1λ) → (vk, sk, τ0). Server creates a verification key
vk and corresponding secret key sk, and an initial stored state τ0. The key vk is
distributed to the users.

• User notifying server Notify.User(st)− > msg. Produces a message that will be sent by
the user to the server.

• Server message handling Notify.Server(sk,msg, τ)→ τ ′. Server updates its state based
on the user message.

Intended use: Server initialises the state. Alice, upon being diagnosed positive, runs Notify.Useron
her state and produces a message to the server. Upon receiving Alices message the server
updates its state.

3 Security Definitions

Informally, we can group our security requirements in three groups: correctness, integrity
and privacy. We provide a brief description of the three areas before attempting a formal
treatment.

2



• Correctness: when operated by honest users, the protocol should produce the desired
outcome.

• Integrity: a malicious user is unable to produce false positives or false negatives.

• Privacy: the participants (i.e users and the server) should not receive any information
apart from what is required.

3.1 Correctness

We formalize the notion as follows: when Alice runs Scan, the result is one if and only if, one
of her contacts has previously run Notify.

Definition 1. A CCT scheme (Contact,Notify, Scan) is Correct if:

Pr[(vk, sk, τ)← Notify.Server(1λ); stbob ← Contact(1λ, ε); stalice ← Contact(1λ, ε);

(msg, st′bob)← Contact(stbob, ε); stalice
′ ← Contact(stalice,msg);

msg′ ← Notify.User(st′bob); τ ← Notify.Server(sk,msg′, τ) :

Scan(vk, stalice
′, τ) = 1] ≈ 1

It is also possible to allow for malicious scheduling by allowing an adversary to insert
additional calls between the ones required by the experiment above (e.g that would cover a
protocol that misbehaves if the contact protocol between Bob and Alice is run more than
once).

3.2 Integrity

We can partition the integrity requirement in two: false positives (forcing a user’s scan to
output 1 when they have not contacted a user who has run Notify) and false negatives (forcing
a user to output 0 when they have contacted persons running notify).

Under our envisioned setup, there exists trivial attacks that produce false negatives.
Malicious users may turn off, damage, or shield their devices preventing correct data exchange.
Malicious servers might discard or delay processing on Notify messages.

Given that our primary application is linked with voluntary use of an application and
a government-run server, we opt to focus on false positives. In the definition, we allow the
adversary to communicate freely with two honest users over a period of days. We also provide
a set of dummy users named “Ian”, such that iand will be diagnosed at the end of day d.
In the base game, we do not allow the adversary to interact with the Ians. We assume that
users sun Scan every night. In class, we covered “one-day” security

3



Game CCTU ,dmax

INT (A, 1λ)

(vk, sk, τ)← Notify.Server(1λ); stbob ← Contact(1λ, ε); stalice ← Contact(1λ, ε); d = 0;

#Morning

d = d+ 1

stiand ← Contact(1λ, ε)

⊥ ← AOUser()

msgd ← Notify.User(stiand); τ ← Notify.Server(sk,msgd, τ)

(τ ′, next)← A(τ,msgd)

If (next = 1) & (d < dmax) Goto #Morning

If (Scan(vk, stalice
′, τ ′) = 1) Return 1

Return 0

In the above game the adversary has access to the following oracle: OUser.

• The user Oracle, when called with a single argument argument OUser(u) runs (stu,msg)←
Contact(stu, ε) and returns msg. When called with two arguments Ouser(u, x) it runs
stu ← Contact(stu, x). In both cases, if u /∈ U it returns ⊥ instead, without affecting
the user’s state.

In the lecture, we defined one-day security for a non-predicting adversary (i.e one who
cannot predict that a user will be infected). We thus define one-day non-predicting CCT
integrity (INT-NP1) as follows.

Definition 2. A CCT scheme (Contact,Notify,Scan) has 1-day non-predicting integrity if
for every stateful PPT adversary A:

Pr[CCT
{alice,bob},1
INT (A, 1λ)] ≈ 0

If we allow more than one day to pass, we can model adversaries who use the server’s mes-
sage to craft messages to other users. If we allow U to include ian, we can model adversaries
using relay or replay attacks based on high-risk individuals.

3.3 Privacy

Privacy in terms of such a system can be very complex: we cover different types of users
(state, healthy, infected, suspect) who might or might not be contacting each other. One
way to express privacy is to state it as a negative: use the system should not reveal any
information other than what is required (at a base level, informing a user that a non-zero
number of their recent contacts was diagnosed).

A simpler way is to explicitly describe the kind of inferences that should not be possible in
the system: i.e the state should not be able to determine if Alice has met with Bob. Towards
that, we will design a game where the adversary is able to contact both users and in addition,
view all communication from Alice and Bob to the server.

4



Game CCTbPRI(A, 1λ)

(vk, sk, τ)← Notify.Server(1λ); stbob ← Contact(1λ, ε); stalice ← Contact(1λ, ε); d = 0;

⊥ ← AOUser,ONotify();

msgalice ← Contact(stalice, ε)

If (b = 1) : stbob ← Contact(stbob,msgalice)

msgbob ← Contact(stbob, ε)

If (b = 1) : stalice ← Contact(stalice,msgbob)

b∗ ← AOUser,ONotify()

Returnb∗

In the above game the adversary has access to the following oracles: OUser,ONotify.

• When called with a single argument, ONotify(u) runs msg ← Notify.User(stu); τ ←
Notify.Server(sk,msgτ) and returns (msg, τ).

• The OUser Oracle, operates as in section 3.2, without ever checking inclusion in U .

Definition 3. A CCT scheme (Contact,Notify,Scan) is private if for every stateful adversary
A: ∣∣∣Pr[CCT0

INT(A, 1λ)]− Pr[CCT1
INT(A, 1λ)]

∣∣∣ ≈ 0

4 A Simple CCT protocol

We will describe a simple CCT protocol offering a baseline level of security based on two
well-known primitives:

• A digital signature scheme (Gen, Sign,Verify) which accepts messages in {0, 1}∗.

• A Pseudorandom function (KeyGen,Eval).

Definition 4. A Pseudorandom function (PRF) is a tuple of algorithms (KeyGen,Eval) with
the following syntax:

• A key generator KeyGen : {1}∗ → K.

• An evaluation function Eval : K ×Mρ → P.

Definition 5. A PRF is secure if no PPT adversary A can distinguish Evalk (i.e. Eval with
the first argument fixed to k) from a random oracle. Concretely, for any PPT A:

Pr
[
k ← KeyGen(1λ) : AEvalk(1λ) = 1

]
− Pr

[
ARO(1λ) = 1

]
≈ 0

For simplicity we will assume K,P to be {0, 1}λ where λ is the security parameter and
Mρ to be {0, 1}∗.

5



4.1 Contact

First, we describe the layout of a users state st. The state is a tuple st = (k, i,M), where k
is a PRF key, i is a counter (i.e a positive integer), and M is a list of user messages m. User
messages m, are tuples m = (i, ρ) of a counter i and a bitstring ρ.

We now describe the opereration of the three interfaces:

• Initialization: Contact(1λ, ε)→ st0: Initialises a new state st0 by calling k ← KeyGen1λ

and setting st0 := (k, 1, []).

• Update: Contact(st, ε)→ (st′,msg′) When run with st = (k, i,M) and an empty second
argument, Contact runs msg′ ← (Eval(k, i), i), calculates its new state st′ := (k, i+1,M)
and returns (st′,msg′).

• Store: Contact(st,msg) → st′ Upon receiving a message msg from another user, it is
used to update the state st = (k, i,M) by appending1 msg to M i.e M ′ = M +msg and
returning the new state st′ := (k, i,M ′).

4.2 Notify

Notify is the protocol used to inform the server that a user has been diagnosed as infected.
The servers reported state τ is a tuple (D,σ) where D is list of PRF keys, and σ is a digital
signature.

We describe the three interfaces:

• Server Initialization Notify.Server(1λ) → (vk, sk, τ0). The Server runs (vk, sk) ←
Gen(1λ), obtaining a public key vk and corresponding secret key sk. The initial server
state is τ0 := ([], ε). The key vk is distributed to the users.

• User notifying server Notify.User(st)− > msg. Given a user state st = (k, i,M), returns
the message msg = k.

• Server message handling Notify.Server(sk,msg, τ) → τ ′. Server updates τ = (D,σ) by
appending the message containing the user key, i.e. D′ = D + msg, producing a new
signature σ′ = Sign(sk,D′) and setting τ ′ = (D′, σ′).

4.3 Scan

Scan is a protocol that is run after contacting the server to obtain a reply τ .

• Scan(vk, st, τ): Parse τ as D,σ. If Verify(vk,D, σ) 6= 1, abort. Otherwise, parse D as
k1, k2, . . . , kn and M as (ρ1, i1), (ρ2, i2) . . . (ρm, im). Then calculate all possible ρj,l =
Eval(kj , il) for j = 1 . . . n and l = 1 . . .m. If, for any j, ρj,l = ρl then return 1, otherwise
return 0.

1We slightly abuse notation by using + for appending.

6



5 Security

5.1 Correctness

Theorem 1. The CCT scheme of section 4 is correct given any PRF (KeyGen,Eval), and
any correct signature scheme (Gen,Sign,Verify).

Proof. We note that when Bob contacts Alice, his state is stbob = (kbob, ibob,Mbob). This
results in msgbob = (Eval(kbob, ibob), ibob) being appended in Alice’s list Malice. We also note
that no operation2 can remove items from Malice or alter the value of kbob. This implies that:
at the time of Bob running Notify.User, kbob is appended to D, from which no operation will
remove it.

Thus, when Alice runs Scan, she obtains a signed list D that contains kbob. By the
correctness of the signature scheme, the signature σ will verify. Because kbob is in D, there
exists l such that kl = kbob. Because msgbob is in M , there exists j such that ij = ibob. Thus,
there exists an l, j pair such that ρl,j is contained in M .

We will prove 1-day security for a non-predicting adversary. A non-predicting adversary
is one without access to soon-to-be-diagnosed users.

5.2 Integrity

We will show that a PPT adversary with oracle access to the PRF (with no access to
Notify.User) cannot force Alice’s Scan to return 1. We will describe a reduction to the un-
forgeability of our signature scheme. The main intuition is as follows: if the adversary passes
the server’s scan message unaltered the probability of Alice outputting 1 is negligible . If the
adversary alters the message, he contradicts existential unforgeability. We begin with the
first claim.

Theorem 2. If, (Gen, Sign,Verify) is existentially unforgerable under chosen message attack,
the CCT scheme of section 4 has 1-day integrity against non-predicting adversaries with
oracle access to the PRF.

Proof. We start by assuming the adversary chooses τ ′ such that D′ 6= D.
We build a reduction B that plays the role of the adversary in the unforgeability game

and the challenger in the integrity game. The reduction starts the unforgeability game by
obtaining a verification key vk that will be passed to A as the server verification key. The
reduction is able to play the parts of all users in the system, with the exception of creating τ
by signing D. Fortunately, it can use its signing oracle from the unforgreability game. When
A returns τ ′ 6= τ , the reduction checks if the signature is valid and if it is, offers it as a forgery
in the unforgeability game. If not, it aborts.

The reduction clearly runs in polynomial time. We now evaluate the probability of it
succeeding in the unforgeability game. We claim that the probability of B wining the un-
forgeability game is at least equal to that of A wining the CCT integrity game. If A wins,
that implies that the signature on τ ′ verified, i.e B has produced a new signature that verifies
under the challenge key vk.

2The proof also holds if we allow an adversary with an OUser oracle in the experiment.

7



To complete the proof we also need to handle the case where the adversary’s choice of D′

does not allow us to complete the reduction, i.e D = D′.

Claim 2.1. If the adversary sets τ such that D′ = D, then the probability that Scan(vk, stalice
′, τ ′) =

1 is neglibible.

Proof. We first note that the list D inside τ contains exactly kian, which is unknown to
the Adversary3. Thus, the goal of the adversary is to send Alice a message ρ, i such that
ρ = Eval(kian, i). We note that the adversary’s view is independent of kian. We assume that
the Adversary made qe queries to Eval, and (pessimistically) assume he wins if he queries
on kian. This event only happens with probability q · 2−λ, and as qe is polynomial in λ is
negligible. What remains is to check the probability that Alice’s evaluations will match an
adversarial message, on the condition that the adversary never queried kian. We assume the
adversary sent qm messages. Alice will perform at most qm evaluations, obtaining at most
qm random values, each to be checked against the adversary’s qm messages. The probability
of a match is bounded by q2m · 2−λ. Letting q = qm + qe + 1 we have that the adversary’s
probability of success is q · 2−λ which is negligible.

The claim completes the proof.

Stronger Adversaries At this point, we note that without any modifications we cannot
prove security for multiple days, or against predicting adversaries. Multiple days allow the
adversary to obtain a known-infected key from the server and use that to craft malicious
messages. In practice this can be mitigated by making the current time available to the
protocol. Predicting adversaries are able to contact Ian (who will end up being diagnosed)
and replay his messages towards Alice. This can be (partly) mitigated by challenge-response
protocols (with appropriate changes to the syntax). Relaying attacks are harder to mitigate,
but may be mitigated by introducing a location parameter to the protocol.

5.3 Privacy

Theorem 3. The CCT scheme of section 4 is private against any4 adversary A playing the
role of the server.

Proof. We point out that the view of the adversary is not dependent on the value of b. The
only thing that depends on the value of b in the experiment are the contents of the M lists
inside stbob and stalice. However, that part of the state is never read within the protocol,
but only appended to. Since the view of the adversary is independent of b, its output will
be independent as well. This implies that Pr[CCT0

INT(A, 1λ)] = Pr[CCT1
INT(A, 1λ), thus the

scheme is private.

3Technically the Adversary learns it, but can no longer message users.
4The definition requires the adversary to be semihonest i.e honest but curious.

8


	Introduction
	Syntax of a CCT protocol
	Contact
	Scan
	Notify

	Security Definitions
	Correctness
	Integrity
	Privacy

	A Simple CCT protocol
	Contact
	Notify
	Scan

	Security
	Correctness
	Integrity
	Privacy


