
NATIONAL KAPODISTRIAN UNIVERSITY OF ATHENS

SCHOOL OF SCIENCE

DEPARTMENT OF INFORMATICS AND TELECOMMUNICATIONS

GRADUATE STUDY PROGRAM
COMPUTATIONAL SCIENCE

DIPLOMA THESIS

Voter Verifiable Internet Voting Protocols

Anthi A. Orfanou

Supervisor: Aggelos Kiayias, Associate Professor

ATHENS

OCTOBER 2012

ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ

ΑΘΗΝΩΝ

ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ

ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ ΚΑΙ ΤΗΛΕΠΙΚΟΙΝΩΝΙΩΝ

ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ

ΥΠΟΛΟΓΙΣΤΙΚΗ ΕΠΙΣΤΗΜΗ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Πρωτόκολλα Ηλεκτρονικών Εκλογών

Με Επαλήθευση Ψήφου

Ανθή Α. Ορφανού

Επιβλέπων: ΄Αγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΑΘΗΝΑ

ΟΚΤΩΒΡΙΟΣ 2012

DIPLOMA THESIS

Voter Verifiable Internet Voting Protocols

Anthi A. Orfanou

RN: M1044

SUPERVISOR: Aggelos Kiayias, Associate Professor

COMMITTEE: Aggelos Kiayias, Associate Professor
Alexis Delis, Associate Professor

OCTOBER 2012

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

Πρωτόκολλα Ηλεκτρονικών Εκλογών

Με Επαλήθευση Ψήφου

Ανθή Α. Ορφανού

ΑΜ: Μ1044

ΕΠΙΒΛΕΠΩΝ: ΄Αγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΕΞΕΤΑΣΤΙΚΗ ΕΠΙΤΡΟΠΗ: ΄Αγγελος Κιαγιάς, Αναπληρωτής Καθηγητής ΕΚΠΑ

Αλέξης Δελής, Αναπληρωτής Καθηγητής ΕΚΠΑ

ΟΚΤΩΒΡΙΟΣ 2012

Abstract

In this Master thesis we study the topic of remote Internet voting, which suffers inherently
from two main drawbacks: the untrusted voting clients and the vote-coercion problem. We
focus on the code verification voting protocols, an approach to deal with integrity issues due to
untrusted voting platforms in remote Internet voting protocols. Code verification protocols use
voter-dependent return codes to allow the voters verify that their ballots were cast as intended.
In this thesis we study the existing code verification protocols and discuss their features and
security guarantees. Moreover we propose a new protocol that achieves vote verification, i.e. it
provides the voter with a receipt of her vote without the use of security codes, assuming the
existence of a real-time untappable channel between the voting servers and the voter. Our pro-
tocol is flexible, allowing us to include an arbitrary number of voting servers to enhance voter
privacy, overcoming the main privacy drawback of the previous approaches. Furthermore we
present a natural extension of our protocol to a code verification protocol, relaxing the security
requirements of the secure channel, based on the existence of two out-of-band channels that do
not depend on the voter computers, established in all previously proposed protocols. In addi-
tion we adapt visual cryptography techniques to transform our construction into a visual vote
verification protocol that allows the voters verify their votes visually, by overlaying seemingly
random black and white images that reveal a receipt of the vote when combined.

SUBJECT AREA: Cryptography
KEYWORDS: Electronic Voting, Voter Verifiability, Voter Privacy, Vote Integrity, Untrusted
Voting Platforms

Περίληψη

Σε αυτή τη διπλωματική εργασία μελετούμε το θέμα των ηλετρονικών εκλογών εξ΄ αποστάσεως

μέσω Διαδυκτίου, οι οποίες είναι από τη φύση τους εκτεθειμένες σε δύο σημαντικές απειλές: τις μη

αξιόπιστες πλατφόρμες υποβολής ψήφου και το πρόβλημα του εξαναγκασμού ψήφου. Εστιάζουμε

στα πρωτόκολλα κωδικού επαλήθευσης, μια τεχνική αντιμετώπισης των ζητημάτων ακεραιότητας

ψήφου που προκύπτουν από τη χρήση των μη αξιόπιστων προσωπικών υπολογιστών. Τα πρωτόκολλα

κωδικού επαλήθευσης χρησιμοποιούν εξατομικευμένους κωδικούς επιβεβαίωσης για κάθε ψηφοφόρο,

ώστε να οι χρήστες να μπορούν να επαληθεύσουν ότι η ψηφος τους καταγράφηκε αναλλοίωτη.

Σε αυτη την εργασία μελετούμε τα υπάρχονται πρωτόκολλα κωδικού επαλήθευσης και αναλύουμε

τα χαρακτηριστικά και τις εγγυήσεις ασφαλείας που παρέχουν. Επίσης προτείνουμε ένα νέο

πρωτόκολλο επαλήθευσης ψήφου, το οποίο χρησιμοποιεί την ίδια την ψήφο ως απόδειξη καταχώρησης,

χωρίς τη χρήση ενδιάμεσων κωδικών, βασιζόμενοι στην υπάρξη ενός ασφαλούς καναλιού πραγ-

ματικού χρόνου μεταξύ των διακομιστών εκλογών και του χρήστη. Η κατασκευή μας είναι ευέλικτη

καθώς μας επιτρέπει να χρησιμοποιήσουμε οποιοδήποτε πλήθος διακομιστών ώστε να ενδυναμώσουμε

την εγγύηση μυστικότητας ψήφου, ξεπερνώντας ένα σημαντικό πρόβλημα των υπάρχοντων λύσεων.

Επιπλέον παρουσιάζουμε μια φυσική επέκταση του πρωτοκόλλου μας με χρήση κωδικών επαλήθευσης,

χαλαρώνοντας τις απαιτήσεις μας για το ασφαλές κανάλι, στηριζόμενοι στην υπάρξη δύο καναλιών

με ασθενέστερες εγγυήσεις ασφαλείας, στα οποία βασίζονται όλες οι προηγούμενες λύσεις. Τέλος,

υιοθετούμε τεχνικές οπτικής κρυπτογραφίας για να μετασχηματίσουμε την κατασκευή μας σε ένα

πρωτόκολλο οπτικής επαλήθευσης ψήφου, το οποίο επιτρέπει στο χρήστη να επιβεβαιώσει την

ψήφο του συνδιάζοντας ασπρόμαυρες, φαινομενικά τυχαίες, εικόνες οι οποίες αποκαλύπτουν την

απόδειξη ψήφου όταν συνδιάζονται.

ΘΕΜΑΤΙΚΗ ΠΕΡΙΟΧΗ: Κρυπτογραφία

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Ηλεκτρονικές Εκλογές, Επιβεβαίωση Ψήφου, Μυστικότητα Ψήφου,

Ακαιρεότητα Ψήφου, Μη Αξιόπιστες Πλατφόρμες Υποβολής Ψήφου

Στη μνήμη της γιαγιάς Καλλιόπης

Ευχαριστίες

Κατ΄ αρχήν θα ήθελα να ευχαριστήσω θερμά τον επιβλέποντα καθηγητή μου, κύριο ΄Αγγελο

Κιαγιά για τη βοήθεια, την εμπιστοσύνη και την καθοδήγησή του κατά τη διάρκεια της διπλωματικής

μου και του μεταπτυχιακού προγράμματος, καθώς και για την υποστήριξή του για τα μελλοντικά

μου βήματα. Το μάθημα της κρυπτογραφίας και η οργάνωση του crypto.sec group του τμήματος

έγιναν η αφορμή να γνωρίσω το πολύ ενδιαφέρον αντικείμενο της κρυπτογραφίας στο οποίο επιθυμώ

να δουλέψω ερευνητικά στο μέλλον. Ευχαριστώ ιδιαιτέρως τον κύριο καθηγητή Αλέξη Δελή που

συμφώνησε να είναι ο εξεταστής αυτής της εργασίας καθώς τον κύριο καθηγητή Ηλία Κουτσουπιά,

που με υποστήριξαν στη συνέχιση των σπουδών μου. Πάνω απ’ολα ευχαριστώ τη μητέρα μου,

Μαρία, που είναι πάντα δίπλα μου καθώς και το φίλο μου, Σταύρο Γερακάρη, για την υποστήριξη

του και τη συμβολή του στην ολοκλήρωση αυτής της εργασίας.

Contents

1 Introduction to Electronic Voting 16

2 Cryptographic Background and Tools 21

2.1 Hash Functions and Random Oracles . 22

2.1.1 Hash functions . 22

2.1.2 Pseudo-random functions . 23

2.1.3 Random oracles . 23

2.2 Commitments . 24

2.2.1 Pedersen’s commitment scheme . 25

2.3 Signatures . 26

2.4 Zero-Knowledge Proofs of Knowledge . 26

2.4.1 The Schnorr protocol . 28

2.4.2 The Chaum-Pedersen protocol . 28

2.4.3 The disjunction of zero-knowledge proofs 28

2.4.4 The conjunction of zero-knowledge proofs 29

2.4.5 Range and set membership proofs . 30

2.4.6 Non-interactive zero-knowledge proofs 30

2.5 Public Key Encryption . 31

2.5.1 The ElGamal crypto-system . 32

2.6 Oblivious Transfer . 33

2.6.1 The AIR 1-out-of-N oblivious transfer 34

2.6.2 The proxy oblivious transfer . 35

2.7 Secret Sharing . 36

2.7.1 A n-out-of-n scheme . 36

2.7.2 Visual cryptography . 37

2.8 The Communication channels . 39

3 The Untrusted Platform Problem 40

3.1 Code Voting . 41

3.2 Code Verification Voting . 43

3.3 The Proxy Oblivious Transfer Approach . 44

3.3.1 POT E-Voting . 44

3.3.2 Security guarantees and weaknesses . 48

3.4 The Pseudo-random Composition Approach 49

3.4.1 The shared-key E-voting . 50

3.4.2 Vote encoding and tallying improvements 54

3.4.3 Security guarantees and weaknesses . 56

3.4.4 Avoiding Coalitions . 57

4 A New Vote Verification Protocol 62

4.1 The vote verification protocol . 64

4.1.1 The main idea . 66

4.1.2 Commitments’ announcement . 67

4.1.3 Range proof . 69

4.1.4 Adding more voting servers . 70

4.1.5 Security guarantees and performance 70

4.1.6 Complexity analysis . 76

4.2 Extension to code verification . 77

4.2.1 The trusted channels and the security codes 77

4.2.2 First code verification protocol . 78

4.2.2.1 Security guarantees . 79

4.2.3 Second code verification protocol . 79

4.2.3.1 Security guarantees and overhead 80

4.3 Extension to visual vote verification . 81

4.3.1 Previous work . 81

4.3.2 The visual vote encoding . 84

4.3.3 The ideal security model and our guarantees 86

4.3.4 Our visual sharing shape descriptor construction 86

4.3.5 Vote submission and verification . 87

4.3.6 Security and complexity properties . 89

Conclusion 95

Abbreviations 96

Bibliography 97

List of Algorithms

1 Pedersen’s Commitment . 25

2 The Schnorr Protocol . 28

3 The Chaum-Pedersen Protocol . 29

4 ZKP Disjunction . 29

5 ZKP Conjunction . 30

6 The ElGamal Crypto-system . 32

7 The AIR (1, N)-OT . 34

8 (Weak) Proxy Oblivious Transfer . 45

9 ZKP encryptions with equal plain-texts . 46

10 POT Code-Verification E-Voting: Setup . 46

11 POT Code-Verification E-Voting: Vote Submission 47

12 Shared-Key Code Verification E-Voting - Setup Phase 51

13 Shared-Key Code Verification E-Voting - Vote Submission 52

14 Shared-Key Code Verification E-Voting - Tallying 56

15 PRF-Composition Enhanced Code Verification 59

16 ZKP of consistent encryptions and commitments 60

17 The full ZKP for the vote-verification protocol 72

18 The Splitting Vote-Verification Protocol . 73

19 Proof of valid visual votes . 91

20 Visual Vote Verification . 92

List of Figures

1.1 The structure of an Internet Voting scheme 18

2.1 Proxy Oblivious Transfer . 36

2.2 2-out-of-2 visual secret sharing . 38

3.1 Comparison of different code sheet’s types . 43

3.2 The POT E-voting . 48

3.3 Pseudo-random composition shared-key E-Voting 53

4.1 ZKP Equality of committed values . 67

4.2 Proof πsum = ZPK(x, y, rx, ry : Cx = gxhrx1 ∧ Cy = gyh
ry
2 ∧ (y = x ∨ y = x+m)) 68

4.3 Range proof in Pedersen commitments . 71

4.4 Overview of the splitting-vote verification protocol 74

4.5 Overview of the code verification protocol . 82

4.6 Chaum’s visual receipts . 83

4.7 The visual building block . 85

4.8 8-bit and 16-bit subdivisions of the building block 85

4.9 Example of encoding of 5 candidates using the same fixed share v1. 87

4.10 All valid shares of Λ8 that are sufficient for encoding up to 5 candidates. . . . 88

4.11 Schnorr OR ZK Proof . 90

4.12 Bitwise OR combinations . 90

List of Tables

3.1 The PRF composition: Knowledge required by the entities 53

3.2 The PRF composition: Proof of messenger’s security 57

3.3 Comparison of the code verification protocols 61

Chapter 1

Introduction to Electronic Voting

During the past decades with the massive explosion of electronic devices the vast majority of

everyday actions have been improved and made simpler through their electronic equivalent.

The Internet, playing the most significant role towards this direction, provided us with nu-

merous easily accessible and user-friendly services such as electronic communication, electronic

commerce, electronic banking and many more. Consequently, electronic voting consists one of

the most important electronic services, making people able to express their preferences in an

easy and confidential way, encouraging them to participate actively and more massively in the

elections procedure.

In conventional elections a voting protocol requires the collaboration of voters, that submit

paper votes in sealed envelopes in a ballot box, and voting authorities which are responsible to

collect and open the submitted ballots after the end of the elections, count the votes and specify

the outcome. Similarly, in an electronic voting protocol all the above parts remain essential, but

the authorities are no longer human beings. Instead, computers are assigned those tasks and

we expect them to complete them in an effective and trustworthy manner. Electronic voting

consists of two different main approaches: Internet Voting and Kiosk Voting [12]. The first lets

the voters participate in the elections remotely, through the Internet, by using their personal

computers or mobile devices, while the second requires them to cast their votes in dedicated

fixed locations, like public libraries or schools, by using specially designed voting machines.

Internet voting has the advantage of making the voting process more convenient, as it sup-

ports mobility, allowing people to vote remotely and thus encouraging their participation in

Anthi A. Orfanou 16

Voter-Verifiable Internet Voting Protocols

the elections and resulting in a more representative and fair democratic outcome. Nonetheless,

while Internet voting has several usability advantages, it is also prone to several attacks regard-

ing vote integrity, due to the vulnerability of personal computers, which may be affected by

malicious software, like trojans, worms and viruses, as well as to the possible threat of voters’

coercion within their home environment. On the other hand, Kiosk Voting, overcomes those

two undesired situations, but lacks in convenience and usability, requiring the voters to act in

a similar way to conventional elections. Both cases share similar advantages, as electronically

submitted votes support quick tallying, counting the votes almost instantly, avoid human mis-

takes and thus build trust among the voters and the elections’ authorities.

In this thesis we are going to focus our attention in Internet Voting, which significantly

supports usability and easiness from the user’s perspective. However as stated before, Internet

Voting should fulfill additional requirements in order to be secure enough to be implemented.

These concerns regarding Internet Voting have been the main reason that it has not seen wide

deployment despite its advantages. Thus apart from the established properties of an electronic

voting scheme, Internet Voting should meet additional criteria to guarantee security against

untrusted voting platforms and coercers. Hence, regarding untrusted platforms, a reliable In-

ternet Voting system should allow the voters to cast secret ballots and verify their recording

by the system, even in the case their devices leak information or do not function appropriately.

Regarding the coercion problem, no coercer or vote buyer that takes advantage of the open

environment of Internet voting should be able to manipulate the elections.

Of course, none of the previous approaches would be implemented without the essential con-

tribution of cryptography. Thus cryptography provides us the necessary primitives and tools to

built robust, efficient and secure voting protocols that guarantee correct outcomes, preserving

anonymity and integrity.

In Internet voting, the voters are able to submit their votes through their personal com-

puters or other personal electronic devices, without using any additional specialized hardware.

Votes should be encrypted with an efficient encryption scheme in order to be transmitted and

submitted to the electronic ballot box, without revealing information about the vote. When

the election period is over the valid ballots are forwarded to the server that is responsible for

decrypting and tallying them, defining the election’s outcome.

Anthi A. Orfanou 17

Voter-Verifiable Internet Voting Protocols

Voter PC Vote Collector Tallier

Set-upRegistration

vote ballot ballot

Internet

Figure 1.1: The structure of an Internet Voting scheme

Definition 1.1. Internet Voting Protocol. An Internet Voting Protocol is a communi-

cation protocol between a set of voters and the authorities running the elections. The main

participating entities of an Internet voting protocol are:

1. Voters, people, that cast their votes.

2. Personal computers that encrypt and forward the votes submitted by the users.

3. Vote Collectors that receive and store the submitted ciphertext.

4. Talliers that decrypt the ciphertexts of the votes and specify the outcome.

A typical Internet voting protocol consists of the the following phases:

1. Elections Set-up: The initial phase where the system parameters are chosen and key

generation takes place.

2. Voter Registration: The phase where eligible citizens receive their voting credentials,

taking any particular actions needed.

3. Vote Submission: The main voting phase where eligible voters cast their votes.

4. Vote Tallying: The last part of the elections where votes are gathered and counted.

In order to create a trustworthy electronic voting system it is essential to clarify the properties

it should have. Following, we briefly discuss the desired properties of a reliable voting protocol,

which have been discussed in [23]. Although we would require an ideal voting protocol which

would fulfill all the criteria presented bellow, in practice it is hard to create such a protocol, as

some of the targets conflict.

Anthi A. Orfanou 18

Voter-Verifiable Internet Voting Protocols

Authentication and Eligibility. Only authorized voters should be allowed to submit votes,

prohibiting unauthorized voters to cast ballots and allowing all eligible voters to participate.

Authentication is usually achieved by using certain voting credentials to identify the voters.

Integrity. No one should be able to alter the submitted votes, and if this is violated it should

be detected by the voters or the system.

Privacy. No one should be able to determined how any voter voted. Privacy is usually

achieved by distributing a task to a number of entities with conflicted interests that are not

likely to collaborate.

Vote Encoding Verifiability. The voters should be able to determine that their ballots were

cast as intended. The voting system should be able to prove to the voters that their votes were

successfully received and recorded.

Vote Tallying Verifiability. The voters should be able to determine that their ballots were

counted as cast. The voting system should be able to prove to the voters that their votes were

successfully included in the final outcome.

Universal Verifiability. Anyone, including passive observers, should be able to verify that

all valid cast votes have been included in the final tally. This is the strongest verifiability re-

quirement were anyone can test the validity of the elections outcome. A system that supports

voter verifiability and universal verifiability is an End-to-End verifiable voting system.

Uniqueness. No voter should be allowed to submit more than one valid votes. This may

be achieved by allowing a voter to vote once or by ensuring that in case of re-voting only the

last vote will be included in the final tally. The last approach is usually employed as a means

against coercion.

Coercion-resistance and Receipt-Freeness. The voters should not be able to prove that

they voted for a particular candidate and if they voted at all and they cannot reveal their voting

credentials to an attacker who successfully submits ballots on behalf of them. Receipt-freeness

is a weaker requirement for coercion-resistance stating that no voter should be able to prove

that she voted in a particular manner, even if she wishes to do so.

Fairness. No one should be able to learn partial results before the end of the elections.

Robustness. The voting system should be able to recover from the faulty behavior of any

reasonably sized coalition of its entities. Robustness is typically achieved by distributing a

task over several entities and ensure that if the well-functioning entities exceed a threshold the

scheme will not fail.

Anthi A. Orfanou 19

Voter-Verifiable Internet Voting Protocols

Organization of this thesis

In the following chapters we discuss Internet voting protocols and how the address the require-

ments we ask for. In chapter 2 we present the essential cryptographic background and tools that

will be exploited in building and analyzing voting protocols and studying their security. Chapter

3 focuses on the untrusted platform problem, summarizing the existing solutions that preserve

vote integrity, paying particular attention in the category of code verification protocols. Chap-

ter 4 presents our contribution against untrusted platforms, where we built a vote-verification

internet voting protocol that guarantees integrity and enhanced vote secrecy, along with its

adaptations in the code verification setting and in visual cryptography setting.

This thesis focuses on the vote submission phase, the online phase of the elections and con-

siders the key generation and the tallying phases separate offline phases, which are solved by

using existing protocols that we do not analyze.

Anthi A. Orfanou 20

Chapter 2

Cryptographic Background and Tools

In this chapter we present the necessary background and the basic cryptographic tools that

are used to design secure e-voting protocols. We begin our discussion by introducing the most

import hard problems, on which the security of various cryptographic protocols is relying and

proceed with essential cryptographic constructions that will be used in several voting protocols.

Definition 2.1. The Discrete Logarithm Problem (DL). Let G be a cyclic group of order

q and 〈g〉 be the group generator. The discrete logarithm problem is to find an integer x ∈ Zq
such that gx = y mod p, for an element y ∈ G.

Although we have no proof that the above problem is computationally hard, if the group is

chosen carefully and appropriately, the solution requires a large number of steps. Thus many

cryptographic protocols base and prove their security on the assumption of the hardness of the

DL problem. However, many protocols are based on a related problem, which is proved to be

no harder than the DL problem: the Decisional Diffie-Hellman Problem which is present below.

Definition 2.2. The Decisional Diffie-Hellman Problem (DDH) Let G be a cyclic group

of prime order q and 〈g〉 the group generator. Given the values ga, gb, gc, with a, b, c ← Zq,

decide if c = ab or c← Zq.

Intuitively the DDH problem states that we cannot distinguish between tuples of the form

(g, ga, gb, gab) and (g, ga, gb, gc). Thus the formal security proofs of various protocols consist of

reductions to DDH problem, showing that the failure of the protocol would imply the existence

of a polynomial time algorithm for the DDH problem.

Anthi A. Orfanou 21

Voter-Verifiable Internet Voting Protocols

There are also other alternative formulations of the DDH problem which are proved to be

equivalent. Thus we may encounter the DDH problem with the following forms.

Definition 2.3. The Decisional Diffie-Hellman Problem (DDH). Alternative Definitions:

(1a) Given (g1, g2) ∈ G×G decide if (x1, x2) was sampled uniformly from the powers of (g1, g2),

i.e. there is an s ∈ Zq (0 ≤ s ≤ q) such that (x1, x2) = (gs1, g
s
2), or uniformly from G×G.

(1b) Given (g1, ..., gn) ∈ Gn decide if (x1, ..., xn) was sampled uniformly from the powers of

(g1, ..., gn) or uniformly from Gn.

2.1 Hash Functions and Random Oracles

2.1.1 Hash functions

A key element in cryptographic protocols are the hash functions, which have numerous appli-

cations in commitment schemes and guaranteeing data integrity. A hash function is a mapping

that compress an input, i.e. takes as input a message of arbitrary length and outputs an element

of bounded-size.

Definition 2.4. Hash Function. A hash function is a pair of probabilistic polynomial time

algorithms (Gen,H) such that on security parameter k:

1. Gen is a probabilistic algorithms which takes as input k and outputs a secret key s.

2. There is a polynomial l such that when H takes as input the secret key s and a string

x ∈ {0, 1}∗ it outputs a string Hs(x) ∈ {0, 1}l(k)

If Hs is defined only for inputs x ∈ {0, 1}l′(n) with l′(n) > l(n), then (Gen,H) is a fixed

length hash function for inputs of length l′(n).

An ideal hash function should fulfill the following requirements, which are ordered according

to the level of the achieved security.

• Non-invertibility (First Pre-mage resistance): Given the secret key s and a hash y = Hs(x)

and a hash function H, it is infeasible for any probabilistic polynomial time algorithm to

find a message m, such that y = Hs(m).

Anthi A. Orfanou 22

Voter-Verifiable Internet Voting Protocols

• Weak collision-resistance (Second Pre-image resistance): Given the secret key s and a

message m1, it should be infeasible for any probabilistic polynomial algorithm to find

another message m2 6= m1 such that Hs(m1) = Hs(m2).

• Strong Collision-resistance: Given the secret key s it should be infeasible for any proba-

bilistic polynomial algorithm to find two messages m1 6= m2, such that Hs(m1) = Hs(m2)

2.1.2 Pseudo-random functions

Pseudo-random functions are functions which cannot be distinguished from truly random func-

tions by any efficient procedure which can get the value of the function at arguments of its

choice, in a black box manner.

Pseudo-random functions can be described in terms of keyed functions. A keyed function is

a two-input function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ with the first input being a secret key and

the second being the normal input. As long as a random key is chosen and fixed we may denote

the function as Fk mapping {0, 1}∗ → {0, 1}∗. Hence pseudo-randomness is expressed in terms

of indistinguishability between Fk from the 2n functions generated for k ← {0, 1}n, and f being

randomly chosen from the set of 2n2n mappings from {0, 1}n to {0, 1}n. Pseudo-randomness

clearly depends of the secrecy of the selected k, stating that once the key is revealed to an

adversary then he can easily distinguish between a random and pseudo-random function.

Definition 2.5. Pseudo-random Function. Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an

efficient, keyed function. We define F to be a pseudo-random function if for all probabilis-

tic polynomial time algorithms A having oracle access to the functions Fk, f it holds that

|Pr[AFk(1n) = 1]− Pr[Af (1n) = 1]| ≤ negl(n), where k ← {0, 1}k and f is chosen uniformly at

random from the set of functions mapping n-bit strings to n-bit strings.

2.1.3 Random oracles

The random oracle model is based on the existence of a public, randomly chosen function H

that can be evaluated when querying an oracle. The oracle is treated as a black box, which

should be consistent in the sense that when the oracle outputs a value y for a query x, then it

should always give the same answer when x is asked. Moreover, given the input x, the value of

H(x) should be completely unpredictable, unless someone has already seen H(x).

Anthi A. Orfanou 23

Voter-Verifiable Internet Voting Protocols

More precisely a random oracle is defined as a mapping from {0, 1}∗ to {0, 1}∞, chosen by

selecting each bit of H(x) independently and uniformly. As they lack any concrete structure,

they are very useful in security proofs, helping as view hash functions in an abstract way. Thus

they provide the background to prove various cryptographic protocols secure, under the so-called

random oracle model, where the adversary views some functions as random oracles. However,

as there is no indication that random oracles can truly exist, for practical implementations they

are instantiated by an appropriate hash function.

2.2 Commitments

A commitment scheme enables an entity to commit to a secret value so that he can no longer

change his mind. This is done by publicly announcing a commitment value which can be later

verified. There are two basic properties that should be satisfied by commitment schemes, called

the hiding property and the binding property.

• Hiding: This property states that it should be hard for anyone to gain any knowledge

about the secret value, unless the committer opens the commitment.

– Unconditional hiding: The commitment values should be statistically indistinguish-

able, that is for any two values s0, s1 the statical distance between corresponding

commitments c0, c1 should be negligible.

– Computational hiding: No polynomial time algorithm A can distinguish among

the commitments c0, c1 corresponding to two different secret values s0, s1, that is

|prob[A(c0) = 1]− prob[A(c1) = 1] is negligible.

• Binding: This property states that it should be hard for the committer to alter the secret

value when the commitment is made public.

– Unconditional binding: No computationally unbounded committer can open a com-

mitment for a different value than the one for which he committed.

– Computational binding: No computationally bounded committer can open a com-

mitment for a different value than the one for which he committed.

No commitment scheme can achieve simultaneously unconditional hiding and binding.

Anthi A. Orfanou 24

Voter-Verifiable Internet Voting Protocols

Definition 2.6. Commitment Scheme A commitment scheme consists of a triple of algo-

rithms 〈Gen,Com,Open〉 where:

1. The randomized Gen(1k) algorithm takes as input the security parameter k and outputs

public key pk.

2. The randomized Compk(v, r) algorithm takes as input the secrete value v and a randomly

generated value r and outputs the commitment/de-commitment value pair (c, d).

3. The deterministic Open(c, d, v) algorithm takes as input the commitment value c and the

de-commitment value d and the secret v and checks that Open(c, d) = v.

2.2.1 Pedersen’s commitment scheme

The commitment scheme described in this section is due to T. Pedersen and is based on the

hardness of the discrete logarithm [15]. The scheme works on a finite cyclic subgroup G of prime

order q, generated by 〈g〉.

Scheme 1 Pedersen’s Commitment

1. Gen(1k): a← Zq
Set pk = ga

2. Comr
pk(s): r ← Zq

Set c = gs · pkr
Output (c, r)

3. Openpk(s, c, r): Verify that c = Compk(s, r)

The above scheme reveals no information about the secret value, being unconditionally hid-

ing, since given an announced value c every secret value s is equally likely to be the commitment’s

value. Moreover the scheme prevents the committer from lying, being computationally binding,

by revealing a value different from s, unless he is capable of computing discrete logarithms.

Specifically, if the committer can find values s 6= s′ ∈ Zq such that Comr(s) = Comr′(s′), then

it should hold that r 6= r′ and thus he can efficiently compute a = loggpk = s−s′
r−r′ mod q.

Pedersen commitments are linearly homomorphic satisfying the following properties:

Anthi A. Orfanou 25

Voter-Verifiable Internet Voting Protocols

• Comr←Zq
h (x)a = Com

ar←Zq
h (ax)

• Comr←Zq
h (x)Com

r′←Zq
h (x′) = Com

r+r′←Zq
h (x+ x′)

2.3 Signatures

Digital signatures are used for public key message authentication. A signature scheme is a triple

of algorithms 〈Gen, Sign, V er〉, where Gen is a randomized key-generator algorithm, Sign is a

signing algorithm and V er is a verification algorithm.

• Gen(1k): On input the security parameter k the generation algorithm outputs a pub-

lic/secret key pair (pk, sk) with the public key set as a signature verification key and the

secret key working as a signing key.

• Signsk(m): On input a signing key sk and a message m the signing algorithm outputs a

digital signature σ of m.

• V erpk(m,σ): On input the verification key pk, a message m and a signature σ the verifi-

cation algorithm accepts or rejects the signature as valid.

The security model of digital signatures is the unforgeability against chosen message attack

(CMA). In this setting we face an active adversary who is allowed to ask for signatures of

multiple messages to the signing oracle. The CMA security requires a probabilistic polynomial

adversary to be unable to produce a valid signature on message of his chose that he has not

queried to the oracle.

Definition 2.7. Existential Unforgeability against Chosen Message Attack (EUF-

CMA). On a security parameter k, for every probabilistic polynomial time adversary A it holds

that Prob[V er(m∗, σ∗) = accept | (sk, vk) ← Gen(1k), (m∗, σ∗) ← ASignsk(vk,m)] ≤ negl(k)

where A cannot ask the oracle to sign m∗.

2.4 Zero-Knowledge Proofs of Knowledge

A zero-knowledge argument is an argument used to convince a player about the validity of an

argument without leaking any information out of the conversation.

Anthi A. Orfanou 26

Voter-Verifiable Internet Voting Protocols

Zero-knowledge proofs are essential cryptographic tools having many application in crypto-

graphic protocols. A zero-knowledge proof is a communication protocol between two players

which enables one party to convince the other party of the validity of a statement without

revealing any information. We call the entities that participate in the protocol prover P and

verifier V . The prover possesses some knowledge about a statement x and wants to prove this to

the verifier. Let w be a witness, which indicates that the prover indeed possesses the knowledge

he claims to have, but is not willing to reveal. Both parties should know a polynomial-time

predicate R which can efficiently compute R(x, y) and test that (x,w) is a valid pair, i.e. that w

is a valid witness for the statement x. We present bellow the formal definition of the protocol.

Definition 2.8. Zero-Knowledge Proof of Knowledge (ZKP). Let P and V be a pair

of interactive programs and L be a binary language. A ZKP interactive protocol, is a three-

message communication protocol, executed on common input x and private inputs w for P and

z for V, if it satisfies the three following properties:

1. Completeness: If x ∈ L and R(x,w) = 1 for some witness w then the verifier accepts

with overwhelming probability, for every challenge z he choses.

2. Soundness: For any polynomial-time program P ∗, let p = Prob[(P ∗, V)−accepts]. Then

there exists an efficient knowledge extractor K, which is able to produce a valid witness

w′ for the statement x with probability p′ = Prob[K(x, z) = w′|R(x,w′) = 1]. It must

hold that if p is non-negligible, then so is p′.

3. Statistical Zero-Knowledge: For any polynomial-time program V ∗ there is an efficient

simulator S, such that for all valid pairs (x,w), the output of the simulator on input x, z

is statistically indistinguishable from the output of the protocol run by P and V ∗, for all

strings z.

Informally, completeness guarantees that if both the prover and the verifier execute the pro-

tocol honestly the verifier must always accept. The soundness property states that if the prover

is cheating then the extractor can gain some knowledge from him. Finally, the zero-knowledge

property states that if a dishonest verifier can extract useful information from an honest prover,

then he must be able to do the same with the simulator. Thus, as the simulator does not know

anything about the witness, it is implied that the prover does not reveal any knowledge.

Usually we consider 3-move zero knowledge protocols with the prover initiating the com-

munication by announcing a committing value and terminating the communication by sending

Anthi A. Orfanou 27

Voter-Verifiable Internet Voting Protocols

the reply (step 1 and 3), and a single random challenge value from the verifier (step 2). We

call these protocols Σ protocols. The most important Σ protocol is the Schnorr Protocol of

knowledge of a discrete logarithm, presented in the following section.

2.4.1 The Schnorr protocol

This ZKP protocol forks over a cyclic group G, with group generator 〈g〉, of order q. The prover

P wants to prove the knowledge of a solution to the discrete logarithm problem, knowing a

value w ∈ Zq such that h = gw, for some h ∈ G, and the verifier should confirm that w = loggh,

knowing p, q, g and h.

Protocol 2 The Schnorr Protocol

• Commitment: P chooses t← Zq and sends y = gt to V

• Challenge: V chooses challenge c← Zq and sends c to P

• Reply: P computes s = t+ wc mod q and sends s to V . V accepts if gs = yhc mod p.

The Schnorr Protocol satisfies completeness as well as special soundness, which holds if we

are able to compute the secret information from two valid runs with identical commitment

phases. In addition the protocol satisfies honest-verifier zero-knowledge, that is, zero-knowledge

as long as we require the verifier to execute the protocol faithfully, while he is allowed to make

additional computations.

2.4.2 The Chaum-Pedersen protocol

The Chaum-Pedersen protocol is a proof of equation of two discrete logarithms, i.e. proving

the relation loggx = loghy. In fact the protocol is a conjunctive version of the Schnorr protocol,

where we prove both knowledge of the discrete logarithms as well as the equality relation they

satisfy. In this protocol the prover wishes to show the possession of an element a ∈ Zq such

that x = ga and y = ha. Similar to the Schnorr protocol, the protocol satisfies completeness,

special soundness and honest-verifier zero-knowledge.

2.4.3 The disjunction of zero-knowledge proofs

There are various scenarios where a prover is required to prove the knowledge of a valid witness

for one out of two or more statements, without disclosing which of them he possesses. In this

Anthi A. Orfanou 28

Voter-Verifiable Internet Voting Protocols

Protocol 3 The Chaum-Pedersen Protocol

• P chooses w ← Zq, set (A,B)← (gw, hw) and sends (A,B) to V

• V chooses challenge c← Zq and sends c to P

• P computes r = w + ac mod q and sends r to V . V accepts if gr = Axc mod p and
hr = Byc mod p.

case, the prover has to reply to the verifier’s challenge by modifying his messages accordingly.

Combining zero knowledge proofs in an “OR” manner can be achieved by using a single chal-

lenge, as shown in [17]. Below we present the disjunction of two zero-knowledge proofs for the

discrete logarithm problem. We assume that the prover knows a valid witness for h1 and wants

to prove the knowledge of one of the discrete logarithms of h1 = gx1 , h2 = gx2 . The trick used

for disjunction of proofs is to produce two accepting arguments, one for the real witness and a

simulated proof for the other part. For the simulated part, the prover pre-selects a challenge

and modifies the real part’s challenge appropriately.

Protocol 4 ZKP Disjunction

1. The prover randomly selects s2, c2 ← Zq and sets y1 = gt1 and y2 = gs2h−c22 . Then he
sends to the verifier the values y1, y2.

2. The verifier randomly selects c← Zq and sends it to the prover.

3. The prover computes c1 = c − c2 mod q, s1 = t1 + c1x1 mod q and sends c1, c1, s1, s2 to
the verifier.

4. The verifier tests whether c = c1+c2 mod q, gs1 = y1h
c1
1 and gs2 = y2h

c2
2 and accepts/rejects

accordingly.

2.4.4 The conjunction of zero-knowledge proofs

Similarly to the previous section, there are cases where the prover needs to prove knowledge

of multiple statements simultaneously. Thus there is need to design a zero-knowledge protocol

that proves knowledge of all statements, while responding to a single challenge of the verifier.

We present the conjunction of two proofs of knowledge of two discrete logarithms x1, x2 such

that h1 = gx1 and h2 = gx2 .

Anthi A. Orfanou 29

Voter-Verifiable Internet Voting Protocols

Protocol 5 ZKP Conjunction

1. The prover randomly selects t1, t2 ← Zq and sets y1 = gt1 and y2 = gt2 . Then he sends
the values y1, y2 to the verifier.

2. The verifier randomly selects c← Zq and sends it to the prover.

3. The prover computes s1 = t1 + cx1 mod q, s2 = t2 + cx2 mod q and sends them to the
verifier.

4. The verifier checks whether gs1 = y1h
c
1 and gs2 = y2h

c
2 and accepts/rejects accordingly.

2.4.5 Range and set membership proofs

A range proof is a proof of knowledge that a committed number lies in an arbitrary integer

interval [a, b]. Range proofs are special case of set membership proofs where the prover shows

that a committed number belongs in any set of values Φ.

Definition 2.9. Proof of Membership Let 〈Gen,Com,Open〉 be a string commitment

scheme. Given a commitment c a set membership proof is a proof of knowledge for the statement

PK(µ, ρ | c = Com(µ, ρ) ∧ µ ∈ Φ).

The most known range proof for a range of the form [0, 2k − 1] has the prover commit to

all k-bits of the committed number µ and then prove that each commitment hides either a 0 or

an 1 and that the committed bits are indeed the bits of µ. The proof requires Θ(k) single bit

proofs. Using a homomorphic commitment scheme generalizes the proof in a range of the form

[a, 2k−1+a] by substituting the commitment c with the value c/ga. The proof can be extended

to an arbitrary range [0, b] by proving the AND composition of the statements µ ∈ [0, 2k − 1]

and µ ∈ [b− (2k − 1), b].

2.4.6 Non-interactive zero-knowledge proofs

An arbitrary Σ-protocol can be made non-interactive in the random oracle model, by using the

Fiat-Shamir heuristic [16]. Σ protocols are public coin protocols, i.e. the verifier sends a single

random value. In order to make zero knowledge proofs non interactive the prover should be

apple to run the whole protocol himself, producing randomness, and then let anyone verify its

validity. Thus the verifier in a non interactive zero knowledge proof not only needs to check the

validity tests, but also needs to make sure that the prover made the initial commitment before

Anthi A. Orfanou 30

Voter-Verifiable Internet Voting Protocols

the challenge value was selected.

The Fiat-Shamir heuristic uses a cryptographic hash function H, H : G × G → Zq, which

takes as input the public keys of the system as well as the commitment value announced by

the prover to produce the challenge value as c = H(Com,Keys). Hence the non-invertibility

property of a secure hash function implies the validity of the proof. Usually H is treated as a

random oracle, guaranteeing invertibility.

2.5 Public Key Encryption

A public key crypto-system consists of three algorithms Π = 〈Gen,Enc,Dec〉.

• The algorithm Gen is a randomized key generation algorithm, which on input 1k, k being

the security parameter, outputs a secret key/public key pair (sk, pk)

• The algorithm Enc is a randomized encryption algorithm which given the input message

m and the public key pk outputs a ciphertext c, c = Encpk(m)

• The algorithm Dec is a deterministic decryption algorithm that, owing the secret key sk,

on input c outputes a message m′, Decsk(C) = m′

For every valid triple of public key crypto-system algorithms it must hold thatDecsk(Encpk(m)) =

m.

The security model for public key encryption is the security against chosen plaintext attacks

(CPA security). In this setting we face an active adversary who is allowed to ask for encryptions

of multiple messages to the encryption oracle. The CPA security requires the adversary to be

unable to distinguish with non-negligible probability among the encryptions of two arbitrary

messages m0,m1, even when he is given access to the encryption oracle. We note that only

randomized crypto-systems can be be proved secure under this model, as otherwise it would be

trivial for the adversary to decide which message is encrypted.

Definition 2.10. IND-CPA Security

Consider the following game:

1. (sk, pk)← Gen(1k).

Anthi A. Orfanou 31

Voter-Verifiable Internet Voting Protocols

2. A is given pk and access to the encryption algorithm Encpk , viewed as an encryption

oracle. Then he outputs two plaintexts m0 6= m1.

3. A random bit b ∈ {0, 1} is chosen and message mb is encrypted. Let c = Encpk(mb) which

is given to the adversary.

4. A accesses the encryption oracle and outputs a bit b′. He wins if b = b′.

A public-key crypto-system is IND-CPA secure if for all probabilistic polynomial times ad-

versaries A it holds that Prob[A wins] ≤ 1
2

+ negl(k).

2.5.1 The ElGamal crypto-system

Probably the most studied public key crypto-system, that has numerous applications in modern

cryptographic protocols, is the ElGamal crypto-system presented in the this section.

The ElGamal crypto-system is an CPA-secure crypto-system. In the setting we discuss the

ElGamal crypto-system is based on the hardness of the DDH problem and works over a cyclic

group G of prime order q of Zp, p and q being large primes with q|p − 1, with 〈g〉 being the

group generator. The triple of algorithms of the encryption scheme follows.

Protocol 6 The ElGamal Crypto-system

• Key Generation: Gen(1k): On input the security parameter k choose the Group
〈G, q, g〉. Then select the public/secret key pair by choosing sk ← Zq and letting
pk = gskmod p. The public key is a tuple 〈G, q, g, pk〉 and the secret a tuple 〈G, q, g, sk〉.

• Encryption of plain text m: Enc
r←Zq
pk (m): On input the public key tuple and a message

m ∈ G choose r ← Zq and output the cipher text Encpk(m) = 〈m · prk, gr〉.

• Decryption of ciphertext: Decsk(〈C1, C2〉): On input the private key tuple and the
cipher text pair 〈C1, C2〉 output C1/C

sk
2 mod p.

To show the correctness of the above protocol, we see that on a valid encrypted cipher text

input 〈C1, C2〉 = 〈m · pkr, gr〉 to the decryption algorithm, the initial message is computed cor-

rectly by C1

C
sk
2

= pk
r·m

(gr)sk
= m.

Anthi A. Orfanou 32

Voter-Verifiable Internet Voting Protocols

The basic property of the ElGamal crypto-system is the multiplicative homomorphism which

is defined below.

Definition 2.11. Homomorphic Encryption. Let E be a probabilistic encryption scheme,

M the message space and C the cipher text space, such that M is a group under operation �
and C is a group under the �. E is called a (�,�)-homomorphic encryption scheme is for any

instance E of the scheme, given c1 = Encr1k (m1) and c2 = Encr2k (m2) there exists an r such that

c1 � c2 = Encrk(m1 �m2).

ElGamal is multiplicatively homomorphic as the product (modulo p) of two cipher texts

equals the cipher text of their product having 〈m1p
r1
k , g

r
1〉 · 〈m2p

r2
k , g

r2〉 = 〈m1m2p
r1+r2
k , gr1+r2〉.

An additive variant of the ElGamal crypto-system can be achieved by raising the message to

be encrypted in the exponent of the group generator, encrypting gm instead of m.

Notation. From now on we will use the notation Encrk(m) to denote the randomized encryption

of message m with the public key k using randomness r. We may write Enc
r←Zq
k (m) to mention

explicitly the choice of a random value in the encryption algorithm or abbreviate to Encrk(m)

either for simplicity or to state that we use a specific random value r, which has be selected in

advance. The same notation will be used for randomized commitment schemes like Pedersen

commitments.

2.6 Oblivious Transfer

Oblivious transfer protocols are two-party communication protocols for sharing information [9].

In an oblivious transfer protocol one entity, called the sender, stores a database of N elements

and the other entity, called the receiver, wishes to retrieve one or more particular elements of

the database, without revealing which values he wants. We symbolize the aforementioned cases

as 1-out-of-N oblivious transfer protocol and k-out-of-N oblivious transfer protocol respectively.

Definition 2.12. Oblivious Transfer (OT). Let R be the receiver, choosing an index x and

S be the sender storing a database f = {f0, ..., fN−1}. An 1-out-of-N oblivious transfer is a

protocol that satisfies the following requirements.

1. Correctness: If both R and S execute the protocol faithfully, R gets fx after executing

the protocol with S, where x is its choice.

Anthi A. Orfanou 33

Voter-Verifiable Internet Voting Protocols

2. Receiver’s privacy: After the execution of the protocol S shall not get information about

R’s choice x.

3. Sender’s privacy: After the execution of the protocol R gets no information about any

other database element fi for i 6= x.

Regarding the protocol’s security modol, we describe the receiver’s security in terms of

indistinguishability. More precisely for any elements fi, fj, 0 ≤ i, j ≤ N−1, and any polynomial

probabilistic and possibly malicious sender S∗, S∗ cannot distinguish between the distribution

of the receiver’s requests for fi and fj with non-negligible probability. In the case of sender’s

security we require that the receiver gets no more information than those he is allowed to

retrieve. We consider the ideal scenario where a trusted third party, given the sender’s database

as input along with the receiver’s request i, outputs the correct element fi. We require that

for every polynomial possibly malicious receiver R∗ in the real model there is a polynomial

simulator S ′ in the ideal model, such that their outputs are computationally indistinguishable.

2.6.1 The AIR 1-out-of-N oblivious transfer

The protocol discussed in this section was designed by Aiello, Ishai and Reingold [8] and is

based on the ElGamal crypto-system. The protocol, that works over a finite cyclic group G of

prime order q, lets the receiver retrieve the element fi he wishes, for the specified index x, while

preventing him from gaining any knowledge about the rest of the database. This corresponds

to the notion of conditional disclosure in a computational setting, that is to enable the sender

to disclose the value fi conditioned on x = i.

Protocol 7 The AIR (1, N)-OT

• The receiver R generates the public/secret key pair (pk, sk) and sends pk to the sender
S, along with the Query c = Encpk(x) of the element x.

• The sender verifies that pk is a valid public key and c a valid encryption. Then for every
element of the database (f0, ..., fN−1), uniformly selects aj ← G and computes the message
mj = aj(x− j) + fj and encrypts them under the receiver’s key. Finally he sends the set
of the encrypted elements {Encpk(m0), ..., Encpk(mN−1)} to the receiver.

• The receiver decrypts mi = Encpk(fi) and outputs fi.

In the above protocol, the decrypted message mi equals fx for i = x, otherwise it is a

Anthi A. Orfanou 34

Voter-Verifiable Internet Voting Protocols

completely random element in G, containing no significant information for the an information-

theoretic perspective. Clearly the AIR OT protocol has linear communication and computa-

tional complexity in the size of the database.

Moreover we should note that the security conditions are relaxed. In case of a malicious

sender, the simulator is allowed produce the sender’s view without taking into consideration the

receiver’s output, that is the malicious sender is not required to know any information about

the database. Since the simulator only needs to create a public-key and a random element’s

encryption, this can be done easily. In case of a a malicious receiver, we allow the sender’s

simulator to be computationally unbounded and output a statistically indistinguishable output

from the original sender’s output. Unboundedness is required in order for the simulator to be

able to compute the secret key sk for the specific public key. Then, on a query for element

indexed by x, the simulator lets mi be a random encryption of element fi, along with letting

mj for all i 6= j to be random encryptions of random elements.

2.6.2 The proxy oblivious transfer

A useful extension of oblivious transfer is the so-called, proxy oblivious transfer. The proxy

oblivious transfer protocol is a three-party communication protocol where the role of the receiver

is divided among two separate entities: a chooser, that selects the elements to be retrieved from

the database, and a proxy, that gets the selected elements, without knowing their identities.

Definition 2.13. Proxy Oblivious Transfer Protocol (POT). A proxy oblivious transfer

protocol consists of 4 polynomial algorithms 〈Genk, Query,Reply, Answer〉.

1. The Genk algorithm generates the key pair (pk, sk)← Gen(1k).

2. The randomized Querypk(x) is the algorithm run among the chooser and the sender on

input the index x, selected by the chooser.

3. The Replypk(f,Querypk(x)) is the randomized algorithm run among the sender and the

proxy, having the query and the sender’s database 〈f〉 as input.

4. The Answersk(Replypk(f,Querypk(x))) algorithm is executed by the proxy, on the data

received from the sender, in order to obtain fx.

Regarding the privacy guarantees of a proxy oblivious transfer we require CPA-security for

the chooser, that is, no malicious polynomial sender S∗ and no malicious polynomial proxy

Anthi A. Orfanou 35

Voter-Verifiable Internet Voting Protocols

Chooser

x ∈ {0, ..., n− 1}
Sender

〈f0, ..., fn−1〉
Proxy (pk, sk)

fx = Answersk(r)

q = Querypk(x) r = Replypk(f, q)

Figure 2.1: Proxy Oblivious Transfer

P ∗ should be able to distinguished between the Query/Reply messages respectively, for two

plaintexts x0, x1 chosen by the sender, with non-negligible probability. Regarding the sender’s

security we require the existence of an unbounded simulator which, given some Query message

and an honest’s proxy output, should be able to output a Reply message, statistically indistin-

guishable from the honest sender’s output.

2.7 Secret Sharing

In various situations certain information needs to be distributed among several entities which

need to collaborate in order to reconstruct the initial value, otherwise no information can be

extracted. This is known as the secret sharing problem where a dealer needs to distribute a

secret to a group of n share-holders, requiring a threshold k of them to collaborate in order

to reveal the secret. This is called a (k, n)-threshold secret sharing protocol, which is robust

against coalitions of n − k malicious entities. A (k, n)-secret sharing scheme should meet the

following two requirements:

1. Knowledge of any k or more pieces makes the secret easily computable.

2. Knowledge of any k− 1 or fewer pieces leaves the secret completely undetermined, i.e. all

its possible values are equally likely.

2.7.1 A n-out-of-n scheme

The simplest secret sharing scheme is the n-out-of-n scheme that distributes a secret at n

different shares and requires that all shares are gathered to reveal it. To share a secret s ∈ G,

where G denotes any group the scheme works, the dealer picks uniformly at random n−1 values

s1, . . . , sn−1 from G and sets sn = s−
∑n−1

i=1 si. The shares si are given to n share-holders who

need to combine all of them to reconstruct s as stated before. Any combination of less than n

shares, that is the value
∑

i 6=i∗ si = s− si∗ is a random value in G that contains no information

about the secret.

Anthi A. Orfanou 36

Voter-Verifiable Internet Voting Protocols

2.7.2 Visual cryptography

Visual cryptography was introduced by Naor and Shamir [27] who designed a protocol for a

k-out-of-n visual secret sharing. Their scheme provides a way so that people, what do not need

to do any cryptographic or computational operations, are able to decode concealed images vi-

sually. In this approach printed text or images can be hidden in a perfectly secure way by using

multiple different layers that reveal no information on their own, but reconstruct the initial

image when k of them are combined and aligned.

Visual secret sharing works with each pixel of the original image separately, by preparing n

different shares or modified variations of a certain pixel. Each share consists of m black and

white sub-pixels so that the original image is represented by a n ×m binary matrix S = [sij],

where sij is 1 if the j-th pixel of the i-th share is black, otherwise it is 0. The binary OR

operation of all elements in a column represents the visual overlaying of the black and white

sub-pixels, with the final picture having the j-th black sub-pixel if there is at least one 1 in

column j. In order to reconstruct the initial share one has to overlay k rows of the matrix

S, yielding a vector v, with the result being interpreted as black if the number of the black

sub-pixels, denoted by the Hamming weight (the number of non-zero elements) H(v), exceeds

a pre-defined threshold H(v) ≥ d, (1 ≤ d ≤ m), or white if the number of black sub-pixels is

bellow a certain threshold H(v) ≤ d − αm, for α > 0, so that we can easily distinguish black

from white pixels.

A k-out-of-n visual secret sharing scheme is constructed by two collections of n×m binary

matrices C0, C1 where in order to share a white pixel or black pixel a dealer picks a matrix in

C0 or C1 respectively. The 3 following conditions need to be met:

1. H(v) ≤ d− αm for any S ∈ C0 and any vector v constructed as the OR of any k rows of

S.

2. H(v) ≥ d for any S ∈ C1 and any vector v constructed as the OR of any k rows of S.

3. For any set of λ < k rows of any S ∈ C0 should be indistinguishable from a set of λ rows

of any matrix S ′ ∈ C1, in the sense that they contain the same vectors with the same

frequencies

A simple 2-out-of-n visual secret sharing can be built by the collection of matrices C0, C1 defined

Anthi A. Orfanou 37

Voter-Verifiable Internet Voting Protocols

Figure 2.2: 2-out-of-2 visual secret sharing

bellow and the special case of the 2-out-of-2, with d = 4 and α = 1/2 is depicted in figure 2.2.

C0 = {all matrices by permuted columns of


100 . . . 0

100 . . . 0

. . .

100 . . . 0

}

C1 = {all matrices by permuted columns of


100 . . . 0

010 . . . 0

. . .

000 . . . 1

}.
Similarly a k-out-of-k secrets sharing is created, with m = 2k−1, α = 1/2k−1, having r = 2k−1!

matrices in collections C0, C1. Each collection contains k × 2k−1 matrices, with C0 constructed

by all column permutations of row vectors with even number of 1 and C1 containing all col-

umn permutations of row vectors with odd number of 1. Based on a k-out-of-k scheme with

C0 = {T 0
1 , T

0
2 , . . . , T

0
r }, C1 = {T 1

1 , T
1
2 , . . . , T

1
r } a k-out-of-n scheme is derived, by considering a

collection H of l functions h from {1, . . . , n} to {1,. . . ,k}. Let B ⊂ {1, . . . , n}, with |B| = k

and pq be the probability that a randomly chosen function h ∈ H yields q different values on

B, with 1 ≤ q ≤ k. Then the new scheme’s parameters are m′ = ml, α = pkα and r′ = rl

with each collection of matrices containing the matrices Sbt for 1 ≤ t ≤ rl and b = 1, 2, where

t = (t1, . . . , tl) and 1 ≤ ti ≤ r. The new matrices are composed as Sbt [i, (j, h)] = T btj [h(i), j].

The new scheme corresponds in repeating l independent times the k-out-of-k scheme inheriting

Anthi A. Orfanou 38

Voter-Verifiable Internet Voting Protocols

its security.

2.8 The Communication channels

Throughout our discussion regarding electronic voting we will use several types of communi-

cation channels offering different security guarantees. Below we summarize the categories of

communication channels.

• Voting booths: A voting booth is a physical apparatus used in kiosk voting to cast a vote.

It guarantees the secrecy of the communication between the voter and the voting servers

and provides vote integrity since it is considered a trusted voting platform, ensuring also

coercion-resistance as no other can be present during vote submission.

• Untappable channels: An untappable channel is the stronger physical assumption we may

ask for in remote voting. An untappable channel is a private channel that prevents a

adversary from intercepting sent messages, as all information sent through an untappable

channel established between two entities remains perfectly secret to all other parties.

• Anonymous channels: An anonymous channel is an secure channel that prevents an ad-

versary from identifying the sender of a message. Anonymous channels can be designed

by special constructions like mixing networks.

• Broadcast channels: A broadcast channel is secure channel, often with memory, where

multiple senders can post publicly available information, accessed by multiple receivers.

• Encrypted channels: A secure channel can be implemented by using cryptographic tech-

niques like encryption. A secure channel protects the transmitted data from a computa-

tionally bounded, passive attacker.

• Out-of-band channels: A channel that is referred as out-of-band communication channel

denotes a private physical channel that by-passes certain entities that are considered weak

in terms of security.

Anthi A. Orfanou 39

Chapter 3

The Untrusted Platform Problem

Personal computers that will be used in Internet voting can be easily compromised with a dra-

matic effect on the elections outcome. Malicious voting clients may try to learn or even alter

that vote that the user submits. Thus special measures should be taken in order to hide the

voting values from malicious computers and prevent them from altering the elections’ outcome

without being detected from the voters. As personal computers are the vulnerable part of the

procedure the vote verification step requires immediate communication with the voters, through

out-of-band communication channels, without relying on the computers. We only discuss solu-

tions that do not depend on any specialized hardware in vote verification phase, through code

verification devices, or vote submission phase, through trusted smart-cards.

Receipts are a highly controversial issue in electronic voting, as although they increase the

credibility of the system, they contradict by default the property of coercion-resistance/receipt-

freeness. In order to deal with this issue, many e-voting system allow the voters to re-vote as

long as the election is running, taking into account only the last submitted votes. In addition,

paper voting is also available after the end of the Internet voting period, which requires the

system’s authorities to be able to cancel electronically submitted votes. Receipts are used to

ensure the integrity of a submitted vote throughout an untrusted platform.

We begin our discussion presenting the entities involved in voter verifiable protocols along

with their role.

• Voters (V): Voters are people that participate in the elections casting ballots that rep-

resent their preferences. Throughout our discussion we will consider ballots consisting

Anthi A. Orfanou 40

Voter-Verifiable Internet Voting Protocols

of a single option chosen by the voter, that is a 1-out-of-N candidates ballot format for

simplicity, unless otherwise stated. All the schemes we review can be extended to sup-

port k-out-of-N ballot format, without taking the order into account, either trivially by

including multiple chiphertexts in the vote or by employing new vote encoding that allow

this option. The voter verify their votes by receipts provided by the voting system.

• Personal Computers (PC): Internet voting uses the personal computers of the voter’s

for the submission of the votes. Thus many important security problems arise from this

option, as voter’s computers are vulnerable to several attacks that may alter the elections’

outcome.

• Vote collectors (V C) or Ballot Boxes (B): Vote collectors are the entities that store the

submitted encrypted ballots during the election period and forward them to the tallier after

the procedure is over. Additionally, the vote collectors cooperates with the messengers to

reconstruct the vote receipts.

• One or more Messengers (MS) or Receipt Code Generators (RCG) : Receipt code

generator severs are responsible to cooperate with the vote collectors to produce the receipt

codes for vote verification.

• Talliers (T): Talliers are the entities that are responsible to decrypt and tally the sub-

mitted votes, defining the outcome when the election period has expired.

• Out-of-Band Communication Channels: Voters should be given receiptsfor each

candidate and those receipts should be sent back to the voters. Thus we need a means to

provide this information, avoiding contact with the personal computers

• Auditor: An authority that supervises the entire process, sees the contents of each in-

volved entity and checks that everyone executes the protocol faithfully.

3.1 Code Voting

Code voting protocols require a set of online voting server that act as receipt code generators.

SureVote, presented by D. Chaum [7] was the first Internet voting protocol that allowed vote

verification through untrusted voting clients. In this approach the voters receive before the

elections a voting card, through an out-of-band communication channel. Every voting card,

Anthi A. Orfanou 41

Voter-Verifiable Internet Voting Protocols

which is identified by a unique number (ID), has different, personalized voting codes and re-

ceipt codes for each voter and candidate. A voter casts a ballot by submitting the voting card’s

identification number for authentication purposes and the voting code that corresponds to the

candidate of her choice. The voting code is a pre-encrypted ballot that together with the voting

card’s identification number enables the receipt code generators to extract the suitable voting

receipt. Finally the during the tallying process voting codes need to be translated into correct

candidates, using a suitable zero-knowledge proof to show the validity of the mapping.

The fact that pre-encrypted ballots are pseudo-random random numbers, unknown by the

PC, guarantees privacy against malicious voting clients that cannot extract any information

about the submitted vote. Moreover there is no means for a malicious computer to cast a vote

for a different valid candidate, guaranteeing vote integrity. Finally the voter is assured that

her ballot was recorded as cast upon receiving the correct receipt code. The receipt code is

generated by the identification number and the voting code by a set of online receipt generators

and can be returned to the voter using the PC as the communication channel, since the PC is

unable to vote for a different candidate after receiving the correct receipt code.

An alternative scheme called Pretty Good Democracy (PGD) was described by Ryan and

Teague in [5], which uses a single receipt code for each voting card, to achieve a degree of

receipt-freeness. The voters are given voting cards with a single receipt code and a set of voting

codes, such that all voting codes are distinct. The protocol requires a set of online receipt code

generator servers that store for each voting card a permuted list of encryptions of all voting

codes, an encryption of the permutation used for the particular voting card and an encryption of

the receipt code. Upon submission of a candidate code and an voting card identification number

the servers perform a plaintext equality test to find a matching encrypted voting code and jointly

decrypt the receipt code of the voting sheet, which is given to the voter and can be safely posted

on the bulletin board. By this trick the voter is assured that a ballot is counted on her behalf,

although she cannot determine which option was cast. Vote tallying requires combining the

matching encrypted voting code with the encrypted stored permutation to extract the correct

vote.

Anthi A. Orfanou 42

Voter-Verifiable Internet Voting Protocols

Code Voting Sheet

ID : 4541

Candidate, V oteCode, CheckCode

Alice, 3853, 8301

. . .
Bob, 6850, 7386

PGD Code Voting Sheet

ID : 4541, CheckCode : 9374

Candidate, V oteCode

Alice, 3853

. . .
Bob, 6850

Code Verification Voting Sheet

Candidate, CheckCode

Alice, 8301

. . .
Bob, 7386

Figure 3.1: Comparison of different code sheet’s types

3.2 Code Verification Voting

In this part of the chapter we discuss the electronic voting system that Norway plans to apply to

conduct elections until 2017. A trial of protocol has already been implemented for the local elec-

tions in Norway in September 2011. We will focus on all the aspects of this protocol, discussing

the role and properties of each entity and presenting the relevant security guarantees. The

main attribute that makes this protocol attractive and unusual is the code verification property

that allows the voters to check whether their votes reached the protocol’s infrastructure entities.

In code verification voting a single messenger server is sufficient to reconstruct the security

code from the encrypted, submitted ballot and notify the voter. Code verification voting uses

a globally known correspondence of candidates and voting codes, in contrast to code voting,

but it employs voter-dependent security codes that are associated with each candidate. These

candidate-code pairs are generated by trusted servers prior to the election and need to be de-

livered in time to the voters, using a secure pre-channel, such as regular mail, to prevent the

computers from learning the codes. When the election period starts, voters cast ballots to their

computers that encrypt and forward them to the vote collector. Immediately the vote collector

should send the necessary information to the messenger, who provides the voter the security

Anthi A. Orfanou 43

Voter-Verifiable Internet Voting Protocols

code, through a secure post-channel, such as an SMS.

In the following sections we study the proposed code-verification protocols that guarantee

vote integrity in case of malicious computers and discuss their efficiency and the new threats

that arise.

3.3 The Proxy Oblivious Transfer Approach

This protocol was proposed in [1] by Heiberg et al. to be adapted to the Norwegian E-voting

system in order to guarantee vote integrity against malicious personal computers. The protocol

is based on completely random security codes, which are generated by an ideal hash function,

viewed as a random oracle, and randomly selected pre-codes. In order to let the messenger re-

construct the security code and notify to the voter, a proxy oblivious transfer protocol is used.

The protocol allows re-voting as a means against coercion.

A 1-out-of-n proxy oblivious transfer is a two-message communication protocol between 3

entities: a chooser, a sender and a proxy. The chooser chooses an index x ∈ {0, ..., N − 1},
which is obliviously transferred to the messenger, through the sender. The chosen index is sent

encrypted to sender, who stores an ordered database f = (f0, ..., fN−1) that should be provided

to the proxy, conditionally encrypted on the selected index x. Then the proxy, who has the

decryption key, obtains fx at the end of the protocol without getting any knowledge about the

index.

3.3.1 POT E-Voting

We present the proposed e-voting protocol, which employs the ElGamal crypto-system, over a

finite cyclic subgroup G ⊂ Zp of prime order q, generated by g, where q|p− 1 and p, q are large

primes. In this setting the chooser corresponds to the voter’s computer that casts the vote, the

sender to the vote collector, who should store the database of the pre-codes, and the proxy to

the messenger, who needs to obtain the correct pre-code and reconstruct the human-readable

security code. The POT protocol described in this section is based on the AIR oblivious transfer

protocol presented in section 2.6.1. There are two different versions of the protocol, depending

Anthi A. Orfanou 44

Voter-Verifiable Internet Voting Protocols

on the size of the database’s elements. If these elements are big, so that it is inefficient to solve

the discrete logarithm problem, the proxy is allowed to store an unordered, sorted version of the

database, denoted by F = {gf0 , ..., gfN−1}, otherwise the proxy stores no additional information.

We call this version a weak proxy oblivious transfer.

Protocol 8 (Weak) Proxy Oblivious Transfer

1. Gen: The proxy runs the key generation algorithm (sk, pk) ← Gen(1k). The proxy’s
public key is given to the chooser and the sender.

2. Query: The chooser chooses x and sends e = Enc
r←Zq
pk (gx) to the sender.

3. Reply: For every element fi of its database, the sender selects ri ← Zq and computes

ei = (
Encρ=1

pk (gi)

e
)ri · Encr

′
i←Zq
pk (gfi). Then he sends the set {e0, . . . , eN−1} to the proxy.

4. Answer: The proxy decrypts each element a in the reply set obtaining y = Decsk(a) = gz.

• Simple POT: The proxy outputs the smallest result zmin = dloggy.

• Weak POT: The proxy outputs the decrypted element that belongs to F .

Completeness and security. In the above protocol the Reply set is created in the

desired format due to the homomorphic properties of ElGamal and the fact that exponentia-

tion can be done efficiently over already encrypted elements. Thus each element is encrypted

as Enc
r′i=(1−r)ri+r′i
pk (g(i−x)ri+fi). The election scheme we discuss uses the weak POT protocol,

where the proxy decrypts the elements and looks for them in F . Let x be the submitted vote.

Then for i = x the proxy obtains gfx ∈ F , the only valid value he wants to retrieve. For all

other elements (i 6= x), the decrypted value g(i−x)ri+fi is a completely random group element

which does not reveal any information about the database, guaranteeing the sender’s privacy.

Concerning the chooser’s privacy, the sender sees only an encrypted value that hides x and the

proxy, that retrieves gfx , learns nothing about the index x. The proxy oblivious transfer is the

bottleneck of the protocol as in requires linear number of exponentiations in the number of the

candidates. As security codes are completely random in this approach this overhead is inevitable.

From the discussion above it becomes clear that the voter’s PC will have to encrypt each

submitted vote with the messenger’s public key, in order to run the oblivious transfer protocol

and return the correct security codes. Thus, the voter’s PC is required to create a different

Anthi A. Orfanou 45

Voter-Verifiable Internet Voting Protocols

encryption of the vote, under the tallier’s public key, in order for the vote to be successfully

counted. Although this process has the advantage that the tallier’s vote decryption is com-

pletely independent from the messenger’s pre-code decryption, it has an additional overhead

as the PC should prove in zero knowledge that both the ciphertexts encrypt the same value

π = PK(µ, r1, r2 | e1 = Encr1pk1(g
µ) ∧ e2 = Encr2pk2(g

µ)). In order to prove that two ciphertexts

of this format correspond to the same plaintexts encrypted under different keys the authors

use an adaptation of Schnorr’s protocol. In addition the voter should be able to authenticate

his identity to vote collector so that we achieve voter’s eligibility. Thus the voter should be

able to sign their ballots using a double envelope scheme, so that the vote collector can verify

the signatures. We assume that there is a public-key infrastructure that enables the voter’s to

sign messages and that can be verified by the vote collector. Any EUF-CMA secure signature

scheme suffices for this purpose.

Protocol 9 ZKP encryptions with equal plain-texts

Let e1 = Encr1pk1(g
m), e2 = Encr2pk2(g

m).

1. The prover chooses m′ ← Zq and sets i1 = Enc
r′1←Zq
pk1

(gm
′
) and i2 = Enc

r′2←Zq
pk2

(gm
′
).

2. The verifier chooses the challenge c← Zq and sends it to the prover.

3. The prover computes and sends m∗ ← m′ + m · c mod q, r∗1 ← r1 + r′1 · c mod q and
r∗2 ← r2 + r′2 · c mod q.

4. The verifier accepts if Enc
r∗1
pk1

(gm
∗
) = i1 · ec1 and Enc

r∗2
pk2

(gm
∗
) = i2 · ec2

Protocol 10 POT Code-Verification E-Voting: Setup

1. Select the system parameters 〈G, g, q〉 and the hash function H : G→ Codes.

2. For every voter V a trusted server creates voter-dependent pairs of candidates and security
codes, selecting RV [cnd]← Zq and setting CodeV [cnd] = H(gRV [cnd]).

3. The pairs (cnd, CodeV [cnd]) are sent by a secure pre-channel to the voters. The pair
(cnd,RV [cnd]) are signed and sent to the vote collector creating its database and the
values gRV [cnd], after being sorted and signed, are given to the messenger.

Anthi A. Orfanou 46

Voter-Verifiable Internet Voting Protocols

Protocol 11 POT Code-Verification E-Voting: Vote Submission

Let (pkt, skt), (pkm, skm) be the public key pair of the tallier and messenger respectively and
(skV , vkV), (skvc, vkvc) be the signing key pair for the voter and the vote collector.

• The voter: submits to his computer a valid candidate number cnd and waits for the
security code.

• The voter’s PC:
Knows pkt, pkm, (skV , vkV).

1. Creates the message Em = Querypkm(cnd) of the POT protocol 8, encrypted with
the messengers public key pkm.

2. Creates the encrypted ballot Et = Encpkt(g
cnd), under the tallier’s public key pkt

along with a NIZKP π = (µ, r, r′ | Et = Encrpkt(g
µ) ∧ Em = Encr

′

pkm(gµ)).

3. Sings σ = SignskV (π,Em, Et) and sends (V oterID, σ, π, Et, Em) to the vote collector.

4. Waits for an accept/reject message from the vote collector.

• The vote collector:
Knows pkm, vkV , (skvc, vkvc),∀ V RV = 〈RV [0],. . . ,RV [N − 1]〉.

1. Verifies π, σ and accepts/rejects accordingly.

2. Stores the ballot replacing previously submitted ballots from the same voter.

3. Creates the set Reply={e0, ..., eN−1}, ei being (
Encρ=1

pk (gi)

Em
)ri · Encr

′
i←Zq
pk (gRv [i]) of the

POT protocol (protocol 8).

4. Signs σ′ = Signskvc(Reply) and sends (V oterID,Reply, σ′) to the messenger.

5. When the election ends signs each submitted ballot σ̃ = Signskvc(Et) and forwards
(σ̃, Et) to the tallier.

• The messenger:
Knows vkvc, (skm, pkm),∀ V {gRV [0],. . . ,gRV [N−1]}.

1. Verifies σ′.

2. Decrypts the elements of the Reply set and outputs the Answer z = gRv [cnd] of the
POT protocol 8. Then he obtains the security code Code = H(z) and notifies the
voter V oterID by sending him the code through the post-channel.

Anthi A. Orfanou 47

Voter-Verifiable Internet Voting Protocols

Setup

Select 〈G, g, q〉, H
∀ V, i RV,i ← Zq

CodeV [i] = H(gRV,i)

Voter V

Submits x, has CodeV [x]

PC

Et = Encpt(g
x)

Em = Encpm(gx)

Vote Collector

〈RV,0, ..., RV,N−1〉
ei = (Encpm (gi)

Em
)ri · Encpm(gRV,i)

Messenger (pm, sm), H

{gR0 , . . . , gRV,N−1}
Decrypts: g(i−x)ri+RV,i

Tallier (pt, st)

x

Em, Et, π

{e0, . . . , eN−1}

Code = H(gRV,x)

y ↔ CodeV [y]

Et

Figure 3.2: The POT E-voting

3.3.2 Security guarantees and weaknesses

Regarding the security of the proxy oblivious transfer e-voting protocol guarantees can be pro-

vided only in the case where one infrastructure player is corrupted while the other entities are

honest. More specifically, regarding privacy, a malicious vote collector gains no information

about the submitted votes, as he sees only the encrypted cipher texts and ElGamal is seman-

tically secure. Regarding vote integrity, since submitted ballots are signed, a malicious vote

collector cannot alter the votes. Moreover, concerning the privacy aspect, the messenger sees

only the vote-independent pre-codes and the verification code of the submitted vote which con-

tain no information about the vote itself. The only information a messenger can extract is to

decide if the voter votes for a new candidate in case of re-voting. The voter’s computer sees

the vote itself, having no privacy guarantees, however it cannot alter it and submit a different

ballot without being detected by the voter who receives a wrong verification code. Moreover,

anytime a malicious computer tries to submitted a fake vote on behalf of an honest voter, the

voter will be notified due to an unexpected verification code and complain about a forgery.

On the other side, code-verification protocols pose certain threats regarding vote’s privacy

and security in case of coalition of two (or more) entities. Probably the most important coalition

Anthi A. Orfanou 48

Voter-Verifiable Internet Voting Protocols

which cannot be prevented from the existing protocols is that of a malicious PC with a malicious

messenger. In this scenario, the malicious PC initially submits the valid candidate x which is

entered by the voter and the messenger generates the appropriate verification code CodeV [x].

However the messenger may delay sending back the verification code, until the malicious PC

creates a forged ballot x′ 6= x and re-votes on behalf of the unaware voter. Then the messenger

discards the new security code and sends back the old-one instead. Thus the voter receives the

correct verification code while a forged ballot has been submitted undetected. Otherwise the

PC itself may submit a forged ballot without the voter’s participation as long as the messenger

is willing to drop the security code. Both scenarios imply that the messenger should be able to

deviate from its standard function, sending no codes at all.

Last but not least, probably the most important drawback of the protocol is that the coali-

tion of the vote collector and the messenger can break the voter’s privacy, even if they exchange

partial information, i.e. they do not decrypt the votes directly. Thus in the case they execute

the protocol correctly but share their stored information, the vote collector’s database and the

messenger’s output, privacy will be lost by comparing the value gRV [i] obtained by the messen-

ger with the pre-code database stored by the vote collector, which provides the correspondence

between each candidate i and the value RV [i]. Furthermore, the correct index, i.e. the corre-

sponding candidate may be identified by the collaboration of those entities if the vote collector

sends the messenger an ordered tuple instead of a set. This can be prevented by running a

mixing network between the two two entities at the expense of the additional computational

cost.

3.4 The Pseudo-random Composition Approach

The protocol discussed in this section is the one that Norway decided to adapt for generating

the security codes and running its elections. Several papers analyze and discuss the features of

the Norwegian voting protocol which aims to become a transparent and well-studied protocol

in order to ensure voter’s trust [2] [4] [11] [3]. This method is considerably faster compared to

the proxy oblivious transfer approach, as there is no need to send a whole database in order to

retrieve a particular random security code. In order to achieve this property, the protocol uses

pseudo-random instead of completely random codes, which are constructed as the superposition

of three pseudo-random functions on the submitted vote, that is an encoding function, a blind-

Anthi A. Orfanou 49

Voter-Verifiable Internet Voting Protocols

ing factor and a pseudo-random function selected from an appropriate family. As trade-off this

approach requires a more complex setup phase, where in order to generate the security codes,

all three pseudo-random functions should be evaluated by trusted servers. The system uses he

ElGamal crypto-system and works over a finite cyclic group G ⊂ Zq of prime order q, such

that q|p− 1. It takes advantage of the multiplicativelt homomorphic property of ElGamal that

allows exponentiation to be done inside a cipher text.

Another advantage compared to the proxy oblivious transfer approach is that due to a smart

trick, there is no the need to encrypt the submitted vote with two different keys and prove equal-

ity of plaintexts in zero knowledge. In order to achieve this property, the protocol shares the

tallier’s secret key among the personal computers and the vote collectors in order to make one

encrypted vote sufficient both for the tallying and code reconstruction processes. However this

fact poses a new threat as the coalition of a dishonest vote collector and messenger can recon-

struct the tallier’s secret key and break protocol’s privacy.

3.4.1 The shared-key E-voting

We now proceed in describing the voting protocol. For our discussion we assume that a voter

submits a single option each time, so that tallying can be done effectively. Later we will further

analyze and remove this assumption, generalizing to an efficient k-out-of-N ballot format. We

separately present the key and code generation phase, which we assume to be done by trusted

servers prior to the election, the election’s phase and we briefly describe the counting phase for

the extended ballot format.

During vote submission the computer submits a signed ballot and proves knowledge of it

contests in order to prevent the corruption scenario where a malicious vote collector along with

a corrupt voter could submit honest voter’s ciphertexts as its own and then learn the vote from

the receipt codes. Given a ciphertext Et = 〈xt, wt〉 = 〈gr, pkrt f(cnd)〉 the computer can prove

knowledge of the plaintext f(cnd) by proving knowledge of r as the voter could obtain f(cnd)

from Et using r. Thus proof is a proof of discrete logarithm knowledge πv = PK(r | xt = gr)

using the Schnorr protocol.

The public keys of the shared-key protocol are created so that they satisfy the relation

Anthi A. Orfanou 50

Voter-Verifiable Internet Voting Protocols

Protocol 12 Shared-Key Code Verification E-Voting - Setup Phase

Let F : G→ Codes be a pseudo-random function family.

1. Choose values a2, a3 ← Zq and set a1 = a1 + a3 mod q. Let skvc = a2, skm = a3 and
skt = a1 be the secret keys of the vote collector, the messenger and the tallier respectively,
while pkvc = ga2 , pkm = ga3 and pkt = ga1 denote their public keys.

2. Select a global encoding function f : C → G, where C is the set of candidates

3. For every voter V select a secret exponent sV ← Zq, compute the commitment γ = gs

and choose a pseudo-random function dV from {F}. Send the corresponding (V, s) pairs
to the vote collector and the corresponding tuples (V, γ, dV) to the messenger.

4. For every voter-candidate pair compute the security codes CodeV (cnd) = dV (f(cnd)sV)
and send the pairs (cnd, CodeV (cnd)) to the voter V through the secure pre-channel.

pkt = pkvc · pkm, as ga1 = ga2ga3 which is shown in protocol 12. This property gives the vote

collector and the messenger the opportunity to partially decrypt cipher-texts encrypted with the

tallier’s public key. Thus, in the second step of the submission protocol (protocol 13) the vote

collector blinds the input ciphertext Et = 〈xt, wt〉 = 〈gr, pkrt f(cnd)〉 with the secret exponent

sV obtaining Eblind = EsV
t = 〈xblind, wblind〉 = 〈xsVt , wsVt 〉 = 〈gsV r, pksV rt · f(cnd)sV 〉. The corre-

sponding proof of correct computation πblind consists of proving knowledge of discrete logarithm

in G3 such that π =blind PK(s | γ = gs ∧ xblind = xst ∧ wblind = wst).

Then the vote collector uses his secret key skvc = a2 on the ciphertext Eblind obtaining

〈xm, wm〉 = 〈xblind, wblindx
a2
blind

〉 = 〈xblind, wblind(x−a2blind)〉 = 〈gsV r, (ga1−a2)sV rf(cnd)sV 〉 = 〈gsV r, pksV rm f(cnd)sV 〉
which is can be decrypted by the messenger that owns the secret key skm = a3. This is

accompanied by a proof of knowledge of correct partial decryption πpdecr = PK(a2 |pkvc =

ga2 ∧ wpdecr = x−a2blind), which is a dlog proof in G×G, with wpdecr = x−a2blind. The final proof con-

sists of πcorrect = (wblind, wpdecr, πblind∧πpdecr), with its steps and verification depicted in table 3.1.

As soon as the messenger receives the values from the vote collector it checks the validity of

the proofs. Upon success it applies the function dV he owns on the decrypted value f(cnd)sV

obtaining the corresponding security code.

Anthi A. Orfanou 51

Voter-Verifiable Internet Voting Protocols

Protocol 13 Shared-Key Code Verification E-Voting - Vote Submission

Let (pkt, skt), (pkm, skm) the public key pair of the tallier and messenger respectively and
(sgV , vkV), (sgvc, vkvc), (sgm, vkm) be the signing key pair for the voter, the vote collector and
the messenger.

• The voter V : Submits a vote for candidate x to his computer and waits for the integrity
cod.

• The voter’s PC:
Knows f, (sgV , vkV), pkt.

1. Computes the encoding f(x) and encrypts Et = Enc
r←Zq
pkt

(f(x)) = 〈xt, wt〉 =
〈gr, pkrt f(x)〉.

2. Proves knowledge of the encrypted vote πv.

3. Computes the signatures the ballot σ = SignskV (Et) and sends (V,Et, σ) to the vote
collector.

4. Waits for a signature σ′ from the vote collector, verifies it and accepts/rejects ac-
cordingly.

• The vote collector:
Knows sV , (pkvc, skvc), (sgvc, vkvc).

1. Verifies σ, πv on the encrypted ballot, signed it σ∗ = Signsgvc(Et) and stores it,
replacing any previously submitted ballots.

2. Blinds Et computing E∗t = Et
sV .

3. Partially decrypts E∗t computing Em = Decrskvc(E
∗
t) = Encpkm(f(x)sV).

4. Creates a ZK proof π of correct computation πcorrect.

5. Sends (V,Et, Em, σ, πcorrect, πv) to the messenger and Et to the tallier when the elec-
tion period ends.

6. Waits for σ′ from the messenger and forwards it to the voter’s PC.

• The messenger:
Knows dV , γ, (pkm, skm), (sgm, vkm).

1. Verifies proofs πcorrect, πv.

2. Decrypts the received values with skt obtaining z = f(x)sV , and computes the secu-
rity code Code = dV (z) which sends directly to the voter using a secure post-channel.

3. Computes the signature σ′ = Signsgm(Code, V oter) and sends it to the voter V ,
through the vote collector.

Anthi A. Orfanou 52

Voter-Verifiable Internet Voting Protocols

Proof Prover Required knowledge

πblind (g, xt, wt)(g
sV , xblind, wblind) = DLOG sV

(g, xt, wt)(g
sV , xsVt , w

sV
t)

πpdecr (g, xblind)(pkvc, wpdecr) = DLOG skvc = a2

(g, xblind)(g
a2 , xa2blind)

πcorrect =
(wblind, wpdecr, πblind, πpdecr) wblind = wsVt , wpdecr = xsV a2t

Verifier Required knowledge

πcorrect wm = wblind · wpdecr Messenger’s input 〈xm, wm〉
πblind Check on (g, xt, wt)(γ, xblind, wblind) xblind = xm, γ
πpdecr Check on (g, xt)(pkvc, wpdecr) pkvc = ga2

Table 3.1: The PRF composition: Knowledge required by the entities

Setup

Select 〈G, g, q〉
Set a1 = a2 + a3 mod q

∀ V sV ← Zq, dV ← {F}
∀ i CodeV [i] = dV (f(i)sV)

Voter V

Submits x, has CodeV [x]

PC f(·)
Et = Encpkt(f(x))

Vote Collector sV , a2

E∗ = Decra2(Et) = Encpkm(f(x))

Em = E∗sV

Messenger dV , a3

z = Deca3(Em) = f(x)sV

Tallier a1

x

Et

Em

Code = dV (z)

y ↔ CodeV [y]

Et

Figure 3.3: Pseudo-random composition shared-key E-Voting

Anthi A. Orfanou 53

Voter-Verifiable Internet Voting Protocols

3.4.2 Vote encoding and tallying improvements

In the previous discussion for simplicity we assumed that each ballot consists of a single candi-

date. However this can be extended to a ballot format that allows voting for multiple candidates

at the same time, without taking the order into account. In the case of k-out-of-N ballot format

the voter votes for k or less options while the rest are padded to the fix length. The security

codes are generated for each submitted candidate individually in order to maintain the proto-

col’s usability while tallying can be computed either for each ciphertext separately or can take

advantage of a new proposed model that allows multiple ciphertext compression into one and

full recovery.

The vote encoding function has a significant impact on the protocol’s efficiency regarding

tallying, as well as its security guarantees. If we choose the encoding function to be a random

injection from the candidate set to G then tallying has a significant overhead, having to mix

and decrypt multiple ciphertexts per candidate. In this section we discuss a novelty which takes

advantage of a special group structure in order for the protocol to be able to compress and re-

cover ElGamal ciphertexts. In order to achieve this functionality, the encoding function should

be of a special form. As the encoding function changes, the security of the protocol is based

on a new problem, related to the DDH, which is is believed to be hard on this specific group

structure. However, as a trade-off for the efficiency increase, we simply rely on this conjecture,

as there is no proof to support this statement.

Let q, p be primes such that p = 2q + 1 and let G be the group of the quadratic residues

of Zp. We denote by L the set of the smallest primes {l1, l2, ..., lL}, li ∈ G, such that li ≤ k
√
p,

and we define the encoding function to be a random injection from the set of candidates to the

set L. Although factoring in the general case is considered a computationally hard problem, its

variant that deals with small primes can be efficiently solved. Thus if we are given the product

of k small primes then we can efficiently recover the primes involved. In this way, we define a

map φ : G→ Gk that assigns each product a =
∏j

k=i lk of the primes of L to an ordered tuple

(li, ..., lj) of the involved primes and any other group element x to the tuple (1, ..., 1, x). We are

now ready to present the problem that forms the bases of the improved protocol.

Definition 3.1. Prime DDH. Given (l1, ..., lL) ∈ Gn decide if (x0, x1..., xL) ∈ GL+1 was

sampled uniformly from the set {gs, ls1, , ..., lsL} (with 0 ≤ s < q) or uniformly from GL+1.

Anthi A. Orfanou 54

Voter-Verifiable Internet Voting Protocols

The above problem is very similar to the DDH problem and although Prime DDH is hard

only if DDH is hard, it seems difficult to prove its hardness from the general DDH. For the pur-

poses of the voting protocol we discuss it suffices to rely on the alleged hardness of a simplified

version of this problem. The new problem asks, given a permutation of a subset of the powers

of the elements in L {lsi , ..., lsj}, to deduce information about the primes and permutation that

were used.

We consider the simple case of elections with two options where two primes l0, l1 are in-

volved and prove it equivalent to the DDH problem. The same argumentation holds for deciding

whether one given element belongs to a set of multiple primes (l0, l1, . . . , lk), but breaks down

if we wish to identify multiple primes raised to the same power. The first case corresponds to a

“yes/no” voting scheme with two possible options while the other corresponds to an one-out-of-

L election scheme with one ciphertext per ballot. Both cases are common elections’ scenarios

for which the proposed scheme’s security guarantees are based on the well known DDH prob-

lem. However we should mention that both cases do not use the new problem’s advantage, the

compression of multiple ciphertexts.

Proof. Let A be an adversary against the above simplified problem that given (l0, l1, g, g
s, a)

tries to decide which prime (if one) was used in value a, i.e. if a = ls0, a = ls1 or a = gt, r ← Zq.

• If A can distinguish (wlog) between ls0 and gt with non-negligible probability, then we have

an adversary against DDH (see definition 1b 2.3, that is given (g1, g2) = (g, l0) ∈ G × G
we can decide if (x1, x2) = (gs, a) is sampled from (gs, ls0) or from G × G). Let p00, p11

denote the probability that A identifies the li correctly and p0r, p1r the probability that

A identifies the random element gt as a power of l0, l1 respectively (where p0r = 1− p1r).

We have that |p00 − p0,r| = µ is negligible (similarly for p11, p1r).

• Let us consider |(p00 − 1
2
) + (p11 − 1

2
)| as the adversary’s advantage. If p00 + p11 − 1 = 2ε,

ε non-negligible, then he have that at least one of p00, p11 must be larger than 1/2 + ε.

Wlog let it be p00. As it must hold that µ = |p00 − p0,r| < ε, we get p11 − p1r =

(1 + 2ε− p00)− (1− p0r) = 2ε− µ ≥ ε which implies an adversary for DDH.

In the above protocol the compression procedure done by the vote collector combines the en-

cryptions of all options in a voter’s ballot in a single cipher-text c∗ = (X∗, Y ∗) = (X1X2 . . . Xk,

Anthi A. Orfanou 55

Voter-Verifiable Internet Voting Protocols

Protocol 14 Shared-Key Code Verification E-Voting - Tallying

Let m be the number of submitted votes, k the maximum numbers of candidates per ballot and
φ : C → Gk.

The Vote Collector:

– Takes as input tuples (V, e, σ) from each voter’s PC, where the ballot e = (c1, ..., ck)
contains ElGamal ciphertexts.

– Extracts the votes computing X∗ =
∏k

i=1 Xi and W ∗ =
∏k

i=1Wi, where (Xi,Wi) = ci
and sends c∗ = (X∗, Y ∗) to the tallier.

The Tallier:

– Selects a random permutation π on set {1, . . . ,m} and computes m∗π(i) = Decskt(c
∗
i)

(implements a verifiable suffling protocol).

– For each element m∗i computes mi = φ(m∗i) and publishes the outcome.

Y1Y2 . . . Yk) = (g
∑k
i=1 ri , pkt

∑k
i=1 rif(cnd1)f(cnd2) . . . f(cndk)). As the product of the encoded

values is a product of small primes in L, the individual values can be recovered successfully

using the mapping φ.

3.4.3 Security guarantees and weaknesses

The shared-key approach has significantly better online computational and communication com-

plexity compared to the POT approach, as it does not depend on the number of candidates.

However, both protocols have similar security guarantees in privacy and integrity aspects. They

also suffer from the same drawbacks in the case of active attacks by coalitions of malicious

servers. Again, the collaboration of the vote collector and the tallier breaches privacy either

directly by decrypting votes due to the additive relation among the secret keys, or indirectly

be revealing partial information. In the case that the messenger reveals its outcome f(x)sV and

the vote collector the secret exponent sV then by comparing the outcome with all the possible

candidates privacy is lost.

Unlike the POT approach, the return codes are computed based on the vote and the protocol

should guarantee that the security codes computed by the messenger leak no information about

the vote, i.e. an adversary cannot decide if the pre-codes contain f(x)s for any valid option

Anthi A. Orfanou 56

Voter-Verifiable Internet Voting Protocols

Game (xt, wt) (xm, wm)
Game 0 (gr, pkrt v) (xst , (wtx

a2
t)s) = (grs, pkrsmv

s)
Game 1 (gr, xa1t v) = (gr, pkrt v) (γr, xa3mpv) = (grs, pkrsmpv)

Game 2 (grvr
′
, xa1t v) = (grvr

′
, pkrt v) (γrpr

′
v , x

a3
mpv) = (gsvst

′
, pkrsmv

st′a3pv)

Game 3 (grvr
′
, xa1t v) = (gr, pkrt v) (γrpr

′
v , x

a3
mpv) = (gsvst

′
, pkrsmv

st′a3pv) | pv ← G

Game 4 (gr, xa1t v) = (gr, pkrt v) (γr
′
, xa3mpv) = (gst

′
, pkst

′
m pv)

Game 5 (gr, pktrtv) (gr
′
, pkt

′
mpv)

Game 6 (gr, pktrt) (gr
′
, pkt

′
mpv)

Table 3.2: The PRF composition: Proof of messenger’s security

f(x) or completely random elements ts ∈ G.

Proof. The proof goes through a series of indistinguishable games between an adversary that

runs the messenger and a simulator that runs the entire protocol, having full knowledge of all

public and secret keys. Indistinguishability is derived from the fact that all values, depicted in

the table below, follow the same distribution. For the reduction we denote γ = gs and pv = vs

with v = f(c) which we compute for all candidates c, s being the voter’s exponent.

We begin with Game 0 which follows the protocol. In Game 1 we take advantage of the

values γ, pv (no longer using s) and the knowledge of the secret keys we posses to maintain the

distribution. In Game 2 we maintain the (x,w)-relation (so does the distribution) but modify

the x values exploiting the properties of the cyclic group. Game 3 is based of the alleged

hardness of Prime DDH substituting pv = vs with a random pv ← G. Game 4 modifies the used

randomness so that Game 5 ends up with a pre-code value wm = pkr
′
mrv which is an independent

encryption of a random value. In Game 6 the value pv becomes unrelated to the value v from

which it should be derived, unnoticed from the adversary. As pv is random and independent of

v, no knowledge about the vote is revealed to the adversary.

3.4.4 Avoiding Coalitions

In order to overcome the shortcomings of the previously discussed protocols Lipmaa [6] proposed

a combination of the approaches in order to build a protocol with better security guarantees.

The new protocol uses the pseudo-random composition approach, but separates the keys of the

Anthi A. Orfanou 57

Voter-Verifiable Internet Voting Protocols

entities to avoid the coalition privacy issue. As a step further towards this direction the new

protocol moves the blinding step from the vote collector to the voter’s PC. Lipmaa’s protocol is

an adaptation of Gjosteen’s protocol with more details regarding the protocol’s instantiation.

In this approach the security codes are constructed as compositions of three pseudo-random

functions, similarly to section 3.4.1. The public encoding function f : Cand→ G is instantiated

as the keyed function fk1(x) = gAESk1 (x), k1 being its secret key, which should be given to each

PC. A secret exponent sV is chosen for each voter and is applied to the encoding in order to

produce the security code. This is done by the voter’s PC as well, which having sV , computes

and encrypts fk1(x)sV = h
AESk1 (x)

V , where hV = gsV . Finally the security code is computed

and sent back to the voter by the messenger, who applies the final pseudo-random function

dk2 : G → Codes , having its corresponding key k2. Only the online phase of the protocol is

discussed, as tallying is performed offline using a suitable mixing and decryption scheme. The

full protocol is given in protocol 15.

The protocol requires a setup phase, where we need to rely on trusted servers who know

the secret keys k1, k2 and the commitment hV = gsV for each voter, so that they can com-

pute for each voter-candidate pair 〈x, V 〉 the corresponding code: CodeV [x] = dk2(h
AESk1 (x)

V) =

dk2((g
sV)AESk1 (x)) = dk2(fk1(x)sV).

During vote submission phase, the vote encryption performed by the PC needs to prove

that the corresponding plaintexts satisfy the correct blinding relation gµ, (gµ)s being con-

sistent with the announced commitment CV = gsV hr that hides the blinding factor. Let

the encryptions be Et = (et1, et2) = (gxpkr1t , g
r1) and Em = (em1, em2) = (gx·sV pkr2m , g

r2).

Then the latter can be written as Em = ((gxpkr1t)sV · pkr2m · pk
−r1·sV
t , (gr1)sV · gr2−sV r1) =

((esVt1)(pkr2m)(pk−r1·sVt), (esVt2)(gr2)(g−r1·sV)) = EsV
t · Enc−r1·sVpkt

(1) · Encr2pkm(1). Hence it suffices

to create a proof π = ZKP(x, sV , r1, r2, r3, r4 : Et = Encr1pkt(g
x) ∧ CV = Comr2

h (gsV) ∧ Em =

EsV
t · Encr3pkt(1) · Encr4pkm(1)). The proof is a genralization of the Schnorr protocol presented in

protocol 16.

The protocol has same security guarantees to that of the previous code verification protocols

regarding individual entities. The main advantage of the protocol is that it deals with the most

serious threat of the previous protocols, the coalition between malicious vote collector and mes-

senger. In this setting the two malicious entities would require the messenger’s output h
AESk1 (x)

V ,

Anthi A. Orfanou 58

Voter-Verifiable Internet Voting Protocols

Protocol 15 PRF-Composition Enhanced Code Verification

• Voter V: Submits a vote for candidate x.

• The Voter’s PC:
Knows sV , f, k1, skV , pkm, pkt.

1. Computes Et = Encpkt(fk1(x)), Em = Encpkm(fk1(x)sV)

2. Publishes Pedersen Commitment CV = gsV hrv , where h ∈ G is a public key and
rV ← Zq.

3. Creates an non interactive proof π = PK(m1,m2, r1, r2, r3 : Et = Enc
r1←Zq
pkt

(gm1) ∧
Em = Enc

r2←Zq
pkm

(gm1m2) ∧ CV = Com
r3←Zq
h (gm2)).

4. Signs the contents σ = SignskV (Et, Em, π) and sends (Et, Em, σ, π) to the vote col-
lector.

• The Vote Collector:
Knows pkt, pkm, vkV , (skV C , vkV C).

1. Verifies π, σ and accordingly stores the vote, replacing previously submitted ballots
from the same voter.

2. Signs σ′ = SignskV C (Em, π) and sends (Et, Em, π, σ, σ
′) to the messenger.

3. Waits until the election is over to forward Et to the tallier.

• The Messenger:
Knows d, k2, vkV C , vkV , vkV C .

1. Verifies the signatures σ, σ′ and the proof π.

2. Decrypts z = Decskm(Em) = h
AESk1 (x)

V

3. Computes Code= dk2(z) and sends it through the secure post-channel to the voter.

Anthi A. Orfanou 59

Voter-Verifiable Internet Voting Protocols

Protocol 16 ZKP of consistent encryptions and commitments

π = (µ1, µ2, r1, r2, r3, r4 : Et = Encr1pkt(g
µ1)∧CV = Comr2

h (gµ2)∧Em = Eµ2
t ·Encr3pkt(1)·Encr4pkm(1))

1. The prover choses m1,m2, ρ1, ρ2, ρ3, ρ4 ← Zq and computes i1 = Encρ1pkt(g
m1), i2 =

Comρ2
h (gm2), i3 = Em2

t · Enc
ρ3
pkt

(1) · Encρ4pkm(1).

2. The verifier choses c← Zq.

3. The prover computes and sends m′1 = m1+cµ1, r′1 = ρ1+cr1, m′2 = m2+cµ2, r′2 = ρ2+cr2,
r′3 = ρ3 + cr3, r′4 = ρ4 + cr4.

4. The verifier accepts only if i1 · Ec
t = Enc

r′1
pkt

(gm
′
1), i2 · Cc

V = Com
r′2
h (gm

′
2) and i3 · Ec

m =

E
m′2
t · Enc

r′3
pkt

(1) · Encr
′
4
pkm

(1)

the secret key k1 and either the secret exponent sV or the commitment hV in order to violate

privacy by comparisons for every possible candidate. The key k1 is highly possible to leak, as it

is common among all PCs. However, unlike the previous protocols, the vote collectors no longer

possesses sV and the proof of knowledge does not reveal hV , which is perfectly hided due to

the Pedersen commitment, making the coalition incapable of breaching privacy. In addition, as

the protocols uses independent keys, the online entities cannot any longer decrypt votes directly.

Although this modification avoids the coalition attack, we should note that in this setting

the vote collector has no active role in the code verification procedure, which has is moved to

the voter’s computer. The vote collector simply verifies proofs and signatures and then passes

all its information to the messenger. Thus, there is no reason to have two entities if their com-

bined knowledge does not affect the protocol’s privacy, so we can merge them in a single entity,

without undermining the protocol.

We conclude our discussion about code verification protocols by comparing the approaches

proposed so far, summarised in table 3.3 in terms of building blocks, efficiency and security

guarantees for N candidates.

Anthi A. Orfanou 60

Voter-Verifiable Internet Voting Protocols

Proxy Oblivious Transfer Shared Key Approach Lipmaa’s Protocol

Code generation random elements prf composition prf composisiton
Components Ri,V ∈ Zq f : Cand→ G f : Cand→ G

H : G→ Codes sV ∈ Zq sV ∈ Zq
dV : G→ Codes d : G→ Codes

Encoding f(x) = gx any f f(x) = gAESk1 (x)

Code mapping H: hash dV : prf d: prf

Code format H(gRi,V) dV (f(x)sV) dk2(g
sV ·AESk1 (x))

Key generation independent keys shared keys independent keys
(skm, pkm), (skt, pkt) skm = skt + skvc (skm, pkm), (skt, pkt)

Security against individual entities individual entities coalitions
PC’s Complexity 8 encr, 1 sing 3 encr, 1 sign 16 encr, 1 sign
VC’s Complexity 2N + 6 encr, 1 ver, 1 sign 9 encr, 1 ver, 1 sign 13 encr, 1 ver, 1 sign
MS’s Complexity N encr, 1 ver 10 encr, 1 ver 14 encr, 2 ver

Table 3.3: Comparison of the code verification protocols

Anthi A. Orfanou 61

Chapter 4

A New Vote Verification Protocol

In this chapter we propose a new Internet voting protocol that provides the voter with a receipt

of her vote, i.e. a vote-verification protocol. In this approach the voter verifies that the her vote

was successfully submitted to the electronic ballot box and was recorded as cast. Our protocol

consists of a set of voters, voting through their personal computers, and online servers for vote

submission and verification. The function of the tallying servers that decrypt and define the

outcome after the election period is over is out of scope of this paper and can be implemented

by using any suitable tallying protocol. Similar to previously proposed protocols [1] [2] [6] we

require the existence a public key infrastructure for voter authentication purposes, assuming

that each computer can digitally sign ballots and the signatures can be verified by the voting

servers. In addition we require the existence of an untappable real-time communication channel,

usually implemented as an SMS, for verification purposes, which is a stronger, physical assump-

tion compared to the out-of-band channels of previous approaches that allowed an attacker to

read the contents of at most one channel, without compromising vote secrecy. We also present

a natural extension of our protocol into the code verification setting, relaxing the need for the

untappable channel. In this case we require the existence of two secure out-of-band commu-

nication channels that are not likely to be both corrupted, similarly to the previous solutions.

Finally we propose an adaptation of the vote verification protocol into a visual vote verification

protocol, that uses images as receipts of the votes.

Our first scheme differs from the previous solutions in two main aspects: the need for secu-

rity codes and the role of the online entities. Our protocol does not require any phase for code

generation and distribution. Although this part was executed off-line, prior to the elections in

Anthi A. Orfanou 62

Voter-Verifiable Internet Voting Protocols

the previous protocols, they need trusted servers and printers to generate the codes, a secure

out-of-band communication channel for code delivery, usually implemented through paper mail,

and additional cryptographic operations and encrypted channels to distribute the essential data

for code reconstruction to the voting servers. In our scheme the voter will be able to recon-

struct the vote itself, using no security codes, and thus verify her vote. We assume that the

voter is capable of executing simple calculations like addition of two-digit numbers (or at least

she is able to verify the correctness of the calculation if she assigns it to a computer), which

are reasonable assumptions for any user participating in Internet voting and having access to a

computer. In order to prevent the voter from coercion we allow re-voting that counts only the

last submitted ballot on behalf of a voter.

Second, our protocol makes no distinction between the online voting servers, having no

dedicated vote collector and messenger servers. It uses two or more identical voting servers,

depending on our privacy concerns, that serve both as vote collectors and messengers, each of

whom provides the voter with a share of her vote. By including additional online servers in our

setting we overcome the main drawback of previous protocols, where the collaboration of the

online servers could violate voter’s privacy. By employing a simple k-out-of-k secret sharing

scheme we achieve easy vote verification on the voter’s part and perfect vote secrecy on the

servers’ part, as long as one server remains honest.

Our proposed scheme is ideal for small scale elections as it can be set-up to run elections

instantly, eliminating code generation and distribution phases. Furthermore, our protocol is

flexible as we may include any number of voting server’s to enhance privacy against coalitions

of malicious servers, unlike the previous protocols that strictly separate the role of the online

servers and cannot be naturally generalized.

Extensions. Our protocol can be easily transformed into a code verification protocol

with a minimum number of modifications. In this approach we ask for a secure code generation

phase before the elections as well as for two secure communication channels, which we will call

the pre-channel and post-channel from now on. These channels, that by-pass the the possibly

malicious PC, are used to distribute the codes to the voter prior to the election and forward the

receipts after vote-submission. They are usually implemented as paper mail and SMS. Based

on this infrastructure we propose two extensions of our protocol into a code verification proto-

col: the first functions similarly to our original protocol during vote submission and asks the

Anthi A. Orfanou 63

Voter-Verifiable Internet Voting Protocols

voter to reconstruct her receipt, while the second introduces an additional, untrusted entity

that possesses no secrets and reconstructs the code for the voter, who simply checks that is

matches her choice. The two adaptation differ in re-voting, with the first excluding re-voting

as a trade-off for privacy, while the second supports it, taking advantage of the additional entity.

The idea of our vote-verification protocol can be adapted in a setting that uses visual cryp-

tography techniques for verification purposes. Visual cryptography was introduced by Shamir

and Naor who designed the first visual secret sharing protocol [27], for black and white images.

Motivated by their construction we present a 2-server vote-verification protocol that allows the

voter verify her vote by overlaying two black and white images, which leak no information about

the vote when separated, but reveal the vote when combined.

4.1 The vote verification protocol

We define the notion of security of our scheme in terms or privacy and integrity. Throughout

our discussion will refer to malicious entities. We clarify that a malicious PC wants to violate

integrity by modifying the vote, as it already knows the vote, while malicious voting servers wish

to violate privacy by learning the vote, as by their construction they cannot substitute or alter

encrypted and signed submitted ballots. Specifically we ask that the following requirements are

met:

• Cast as intended: A malicious PC cannot submit a forged ballot x′ on behalf of an honest

voter voting for x without being detected by the voter.

• Vote secrecy/Voter privacy: For a k server instantiation of the protocol (k ≥ 2) any

coalition of up to k − 1 servers gets absolutely no information about the submitted vote.

Definition 4.1 (Cast as intended). Let us consider the following game.

Game1:

1. Let A and C denote two entities, an adversary that is given access to the public keys,

voter IDs (and possibly any code sheets Csh if any) and a challenger that runs the voting

protocol.

2. We allow A to pick a voter ID and corrupt his PC.

Anthi A. Orfanou 64

Voter-Verifiable Internet Voting Protocols

3. Let voter ID cast a ballot for option x.

4. Then C runs the voting protocol and outputs the encrypted vote E, the secret receipt R

and all other necessary public information announced PUBLIC(x) = (c1(x), . . . , ck(x)).

5. Let the predicate V (R,PUBLIC, (Csh)) = 1 if the receipt R generated by C is consistent

with the PUBLIC information announced, V (R,PUBLIC, (Csh)) = 0 otherwise.

6. A wins the game if V (R,PUBLIC, (Csh)) = 1 and Dec(E) 6= x.

We say that the protocol satisfies “Cast as intended” if Pr[A() wins] ≤ ε, where ε is a negligible

function.

Definition 4.2 (Voter Privacy). Let us consider the following game.

Game2:

1. Let A and C denote two entities, an adversary that is given access to the public keys,

voter’s voting servers’s IDs and a challenger that runs the voting protocol.

2. We allow A to pick and corrupt ut to k − 1 voting servers.

3. Then A picks a voter ID and two options x0, x1 of his choice, which we provides to the

corrupted PC of the voter.

4. Then C runs the voting protocol, picking at random a bit b ← {0, 1} and encrypting

E = Enc(xb). Then he outputs the encrypted vote E, the secret receipt R, all other

necessary public information PUBLIC(x) = (c1(x), . . . , ck(x)) and sends E to the voting

servers.

5. Then A in possession of the information PUBLIC and the private values of at most k− 1

server’s that controls tries to learn the value xb that was submitted, outputting a bit b∗.

6. A wins the game if b∗ = b.

We say that the protocol satisfies “vote secrecy/voter privacy” if Pr[A() wins] ≤ 1/2 + ε, where

ε is a negligible function.

Anthi A. Orfanou 65

Voter-Verifiable Internet Voting Protocols

4.1.1 The main idea

We are now ready to describe the vote verification protocol. For simplicity we discuss the con-

struction that uses two voting servers, say A1 and A2, however our construction is generalized

naturally to any number of voting severs, say k ≥ 2. We assume that the N candidates partic-

ipating in the elections are represented as elements in [0, N − 1] and their values are globally

known by the voters.

Our protocol uses the additive version of the ElGamal crypto-system and Pedersen com-

mitments over a subgroup G ⊂ Zp for prime order q, generated by 〈g〉, where p, q are large

primes such that q|p − 1. Our message space is Zm defined by the value m that characterizes

the system. We chose m so as to facilitate the vote reconstruction and verification by the voter.

Specifically we chose m to be the smallest power of 10 such that N ≤ m < q. As we consider

small scale elections with at most a few hundred options in total, typical values for m will be

100 or 1000. By this trick we avoid the modular operation that would normally require the vote

verification step which boils down to simple addition of two two-digit or three-digit numbers by

the voter. By introducing k voting servers, (2 ≤ k < q) the voter needs to add the corresponding

k numbers.

During vote submission a voter casts her ballot through her PC voting for candidate x. Then

the PC splits the vote by picking two random values x1, x2 such that x = x1 + x2 mod m, using

the simplest secret sharing form, with the PC being the dealer and the servers the share-holders

such that the voter can easily reconstruct the secret. Then PC encrypts the vote, computes

commitments to the shares x1, x2 and sends them to the online servers. In addition it sends to

each online server Ai the opening of the commitment Ci = Com(xi) for verification.

The online servers Ai need to verify the additive relation between the submitted vote

and the committed values. Our protocol uses Pedersen commitments Comg,h(x) = gxhr for

r ← Zq. Let Et = (Cx, Cr) = (gxpkrt , g
r) be the encryption of the vote under the tallier’s

public keys pkt and C1 = gx1hr1 , C2 = gx2hr2 be the commitments to shares x1, x2 pos-

sessed by the severs. Thus, server A1, which holds share x1, needs to verify that his share

x1, the committed value x2 and the encrypted vote x satisfy the relation x = x1 + x2 mod

m. As x1, x2 ∈ Zm then for their sum it must hold that either 0 ≤ x1 + x2 ≤ m − 1 or

0 ≤ x1 + x2 − m ≤ m − 1 and thus we need to prove that the vote’s ciphertext Cx, which

Anthi A. Orfanou 66

Voter-Verifiable Internet Voting Protocols

Public Input: g, h1, h2

Com1 = gxhr11 , Com2 = gxhr22

Prover Verifier
Private input: x, r1, r2

w, ρ1, ρ2
r←− Zq

y1 = gwhρ11 , y2 = gwhρ22
y1, y2

−−−−−−−−−−−−−−−−−→

c
r←− Zq

c
←−−−−−−−−−−−−−−−−−

s = w + cx
ρ′1 = ρ1 + cr1

ρ′2 = ρ2 + cr2

s, ρ1, ρ2
−−−−−−−−−−−−−−−−−→ gsh

ρ′1
1

?
= y1(Com1)c

gsh
ρ′2
2

?
= y2(Com2)c

Figure 4.1: ZKP Equality of committed values

can be viewed as a commitment with public key pkt, contains the same value with either

Csum = C1 · C2 = gx1+x2hr1+r2 or C ′sum = gx1+x2−mhr1+r2 . Thus we need to built a zero knowl-

edge proof πsum = PK(x, y, rx, ry : Cx = gxpkrxt ∧Cy = gyhry ∧ (y = x∨y = x+m)) (figure 4.2)

which is based on the proof for equal committed values (figure 4.1) by adapting the technique

of [17]. The server A2 functions similarly.

Upon successful verification server Ai sends xi to the voter through the untappable chan-

nel. Finally the voter verifies her vote by checking that the received values satisfy the relation

x = x1 +x2 mod m. After the end of the vote submission phase, one server, which may be prede-

fined or selected by the tallier, forwards its contents to the tallier server to produce the outcome.

4.1.2 Commitments’ announcement

Upon successful verification of the zero knowledge proof that the encrypted vote, the possessed

share and the committed share satisfy the additive relation, the server accepts the vote as valid

and stores it. We avoid to use a broadcast channel from the PC to the voting servers since

we try to keep the construction simple, making no special assumptions about the environment.

However this setting has a potential threat in the case that a malicious PC attempts to violate

Anthi A. Orfanou 67

Voter-Verifiable Internet Voting Protocols

Prover Public Input: g, h1, h2,m Verifier
Private input: x, x1, x2, rx, ry Comx = gxhrx1 , Comy = gx1+x2h

ry
2

If x = x1 + x2:

w, ρa, ρb, c2, sm, ρm1 , ρm2

r←− Zq
a = gwhρa1 , b = gwhρb2

am = (Comx)
−c2gsmh

ρm1
1

bm = (Comy
gm

)−c2gsmh
ρm2
2

If x = x1 + x2 −m:

w, ρa, ρb, c1, s, ρ1, ρ2
r←− Zq

a = (Comx)
−c1gshρ11

b = (Comy)
−c1gshρ22

am = gwhρa1 , bm = gwhρb2
a, b, am, bm

−−−−−−−−−−−−−−−−−→

c
r←− Zq

c
←−−−−−−−−−−−−−−−−−

If x = x1 + x2:
c1 = c− c2, s = w + xc1

ρ1 = ρa + rxc1, ρ2 = ρb + ryc1

If x = x1 + x1 −m:
c2 = c− c1, sm = w + xc2

ρm1 = ρa + rxc2, ρm2 = ρb + ryc2
c1,c2,s,sm,ρ1,ρ2,ρm1 ,ρm2

−−−−−−−−−−−−−−−−−→ c
?
= c1 + c2

gshρ11
?
= a(Comx)

c1

gshρ22
?
= b(Comy)

c1

gsmh
ρm1
1

?
= am(Comx)

c2

gsmh
ρm2
2

?
= bm(Comy

gm
)c2

Figure 4.2: Proof πsum = ZPK(x, y, rx, ry : Cx = gxhrx1 ∧ Cy = gyh
ry
2 ∧ (y = x ∨ y = x+m))

Anthi A. Orfanou 68

Voter-Verifiable Internet Voting Protocols

integrity by preparing encryptions and valid shares of two different votes. In this scenario we

assume that the voter submits a vote for candidate x but the PC wants to submit a vote for

candidate y 6= x without being detected by the voter. The PC encrypts y, computes the valid

shares x1 + x2 = x mod m for the real vote and sends to servers inconsistent commitments,

giving A1 the tuple (Encpkt(y), x1, Comg,h(y−x1)) and A2 (Encpkt(y), x2, Comg,h(y−x2)). Both

tuples are accepted as valid, satisfying the additive relation, and the servers forward the shares

x1, x2 to the voter who accepts the verification check.

In order to face this issue each server needs to verify that the commitment he holds is com-

patible with the shares given to the other server. Thus we establish communication between

the online servers that exchange the commitments they hold. As we have the PC open the

commitment of Ci to the server Ai, the latter verifiers that the commitments are valid for the

share xi he holds. Hence the PC sends to servers A1, A2 the tuples (Encpkt(x), x1, r1, C1, C2),

(Encpkt(x), x2, r2, C1, C2) respectively, where r1, r2 are the openings to commitments C1, C2.

Then the online servers exchange the commitments they hold and test that C1 = gx1hr1 , C2 =

gx2hr2 . If the values do not match the servers detect a forgery attempt.

4.1.3 Range proof

A malicious computer has another way to alter the submitted ballot undetected. Although the

PC is no longer capable of voting for another candidate, the system is vulnerable to random-

ization attacks, where the PC may try to de-validate the vote and submit a random value. In

theis scenario that the PC, instead of the value x given by the voter, casts a vote for value

y = x + m. By submitting this value y that belongs in Zq and picking shares y1, y2 ∈ Zm that

satisfy y = y1 + y2 mod m and y1 + y2 /∈ Zm, the PC will generate a fake vote whose shares

pass the proof πsum, as it will be the case that gy1+y2h
ry
2 is consistent with the commitment

C ′sum = gx+mhrx1 = gyhrx1 . Moreover the voter will accept the vote as valid, as the votes are

equivalent modulo m. This attack can be prevented by checking that the submitted vote is a

valid vote by performing a range proof πR = ((x, rx) : Cx = gxpkrxt ∧ (0 ≤ x ≤ N − 1)).

To show our statement we employ the range proof in exponents presented in [24]. The

proof is based on the fact that any number x ∈ [0, N − 1] can be written in the form x =∑blog2(N−1)c
j=0 µiHj, where Hj = b(N − 1 + 2j)/2j+1c and µi ∈ {0, 1}. Then it commits to all

Anthi A. Orfanou 69

Voter-Verifiable Internet Voting Protocols

values µj and uses a standard Schnorr OR proof (see figure 4.11) to show that µj ∈ {0, 1},
requiring log2N single bit proofs. However, for small values of N the proof remains efficient for

our purpose. Both the prover and the verifier precompute the coefficients Hj and the verifier

can confirm that the committed values µj represent µ by checking that gµ =
∏blog2(N−1)c

j=0 (gµj)Hj .

The full scheme is shown in figure 4.3.

4.1.4 Adding more voting servers

The protocol can be generalized by adding multiple servers to enhance voter privacy, say k

servers, as long as 2 ≤ k < q. In this case the PC uses a k-out-of-k secret sharing scheme,

by picking k values xi such that x =
∑k

i=1 xi mod m and send each xi to the corresponding

server Ai. Commitments Ci of all shares xi are computed and sent to all servers along with the

opening of Ci which is given to server Ai. The range proof that the encrypted vote x belongs

in [0, N − 1] remains the same, while the additive relation proof is a generalization of figure’s

4.2 proof, stating that πsum = ZPK(x, y, rx, ry : Cx = gxpkrxt ∧ Cy = gyhry ∧ (y = x ∨ y =

x+m ∨ y = x+ 2m ∨ · · · ∨ y = m+ (k − 1)m)). The full proof π for the 2-server construction

is given in protocol 17 and the voting protocol in protocol 18 and figure 4.4.

4.1.5 Security guarantees and performance

In this section we analyze the security guarantees in terms of privacy and integrity as well as the

protocol’s overall efficiency. We guarantee that the protocol meets our security requirements in

the following corruption scenarios:

• The voter’s PC is malicious.

• A subset of k − 1 (or less) out of k voting servers are honest-but-curious, i.e. they follow

the protocol but share their information with an attacker.

In the above cases if the voter does not complain about a forgery (due to wrong candi-

date reconstruction) and does not re-vote, then she can be sure that her original vote will be

counted in the final outcome. In both cases the vote remains perfectly secure. However we

cannot provide any guarantees against a coalition of a malicious PC with a malicious voting

server that deviates from the protocol, since in this strong corruption scenario fake ballots can

Anthi A. Orfanou 70

Voter-Verifiable Internet Voting Protocols

Public Input: g, h,N

ν = blog2(N − 1)c, C = gxhr

Prover Verifier
Private input: x ∈ [0, N − 1], r
Computes µj ∈ {0, 1}
s.t. x =

∑ν−1
j=0 µjHj

For j = 0, . . . , ν − 1:

Pick rj ← Zq s.t.
∑ν−1

j=0 rjHj = r

Cj = gµjhrj

Case µj = 0:
wj, c2j, ρ2j ← Zq
y1j = hwj , y2j = hρ2j(Cj/g)−c2j

Case µj=1:
wj, c1j, ρ1j ← Zq
y1j = hρ1j(Cj)

−c1j , y2j = hwj

{Cj ,y1j ,y2j}ν−1
j=0

−−−−−−−−−−−−−−−−−→
c← Zq

c
←−−−−−−−−−−−−−−−−−

Case µj = 0:
c1j = c− c2j, ρ1j = wj + c1jrj
Case µj = 1:

c2j = c− c1j, ρ2j = wj + c2jrj
{c1j ,c2j ,ρ1j ,ρ2j}ν−1

j=0

−−−−−−−−−−−−−−−−−→ C
?
=

∏ν−1
j=0 C

Hj
j

For j = 0, . . . , ν − 1:

c
?
= c1j + c2j

hρ1j
?
= y1j(Cj)

c1j

hρ2j
?
= y2j(Cj/g)c2j

Figure 4.3: Range proof in Pedersen commitments

Anthi A. Orfanou 71

Voter-Verifiable Internet Voting Protocols

Protocol 17 The full ZKP for the vote-verification protocol

Public Input: 〈p, q, g,m〉 the system parameters, h, pkt the commitment key and the
tallier’s public key, N the number of candidates and ν = blog2(N − 1)c, Et = (Ex, Er) =
(gxpkrt , g

r), C1 = gx1hr1 , C2 = gx2hr2 .

Prover’s Input: x, x1, x2, r, r1, r2.

1. The Prover:

• Computes µj ∈ {0, 1} s.t. x =
∑ν−1

j=0 µjHj where Hj = b(2j +N − 1)/2j+1c
• For j = 0, . . . , ν − 1:

– Picks rj ← Zq s.t.
∑ν−1

j=0 rjHj = r.

– Commits to µj as Ej = gµjpk
rj
t .

– If µj = 0 he picks wj, c2j, ρ2j ← Zq and sets y1j = pk
wj
t , y2j = pk

ρ2j
t (Ej/g)−c2j .

– if µj = 1 he picks wj, c1j, ρ1j ← Zq and sets y1j = pk
ρ2j
t (Ej)−c1j , y2j = pk

wj
t .

• If x = x1 +x2 mod q he picks w, ρa, ρb, c2, sm, ρm1 , ρm2 ← Zq and sets a = gwpkρat , b =
gwhρb , am = (Ex)

−c2gsmpk
ρm1
t , bm = (C1C2/g

m)−c2gsmhρm2 .

• Else if x = x1 + x2 − m mod q he picks w, ρa, ρb, c1, s, ρ1, ρ2 ← Zq and sets a =
(Ex)

−c1gspkρ1t , b = (C1C2)−c1gshρ2 , am = gwpkρat , bm = gwhρb

• He sends (a, b, am, bm, {Ej, y1j, y2j}ν−1
j=0) to the Verifier.

2. The Verifier picks c← Zq and sends it to the Prover.

3. The Prover:

• For j = 0, . . . , ν − 1:

– If µj = 0 he sets c1j = c− c2j, ρ1j = wj + c1jrj.

– if µj = 1 he sets c2j = c− c1j, ρ2j = wj + c2jrj.

• If x = x1+x2 mod q he sets c1 = c−c2, s = w+xc1, ρ1 = ρa+rc1, ρ2 = ρb+(r1+r2)c1.

• Else if x = x1 + x2 −m mod q he sets c2 = c − c1, sm = w + xc2, ρm1 = ρa + rc2,
ρm2 = ρb + (r1 + r2)c2.

• He sends (c1, c2, s, sm, ρ1, ρ2, ρm1 , ρm2 , {c1j, c2j, ρ1j, ρ2j}ν−1
j=0) to the Verifier.

4. The Verifier accepts if all the following tests succeed, otherwise he rejects:

• Ex =
∏ν−1

j=0 Ej
Hj .

• c = c1 + c2 and gspkρ1t = a(Ex)
c1 and gshρ2 = b(C1C2)c1 and gsmpk

ρm1
t = am(Ex)

c2

and gsmhρm2 = bm(C1C2/g
m)c2 .

• For j = 0, . . . , ν − 1: c = c1j + c2j and pk
ρ1j
t = y1j(Ej)c1j and pk

ρ2j
t = y2j(Ej/g)c2j .

Anthi A. Orfanou 72

Voter-Verifiable Internet Voting Protocols

Protocol 18 The Splitting Vote-Verification Protocol

Let N be the number of candidates, (pkAi , skAi), (pkt, skt) be the public/secret key pairs of
server Ai (∀ i = 1, . . . , k) and the tallier respectively, (skV , vkV) and (sgAi , vkAi) be the sign-
ing/verification key pairs of voter V and server Ai, 〈g〉 the group generator of G and h the
commitment public key.

• The voter V:

1. Submits a vote for candidate x.

2. Waits for shares x1, . . . , xk from the servers and checks that x = x1 + · · · + xk mod
m.

• The PC (skV , pkt, {pkAi}ki=1):

1. Picks x1, . . . , xk−1 ← Zm and sets xk = x−
∑k−1

j=1 xk mod m.

2. Encrypts x as Et = Enc
r←Zq
pkt

(gx).

3. For all i = 1, . . . , k encrypts xi and commits to it as ei = Enc
ρi←Zq
pkAi

(xi) and Ci = gxihri

respectively, with ri ← Zq, and encrypts the randomness Ri = Enc
r′i←Zq
pkAi

(ri).

4. Produces zero-knowledge proof π = (x, r, {xi}ki=1, {ri}ki=1 | Et = Enc
r∈Zq
pkt

(gx)∧{Cj =

gxihri} ∧ x =
∑k

i=1 xi mod m ∧ x ∈ [0, N − 1]).

5. Signs the vote σ = SingskV (Et, π).

6. For all i = 1, . . . k sends to Server Ai (Et, ei, Ri, {Cj}kj=1, π, σ, V).

• Server Ai (sgAi , skAi , vkV):

1. Sends Cj to all servers Aj, j 6= i, and receives Ci from them. Verifies that all Ci
values are the same.

2. Decrypts ri, xi, and verifies that it is a valid opening of Ci = gxihri .

3. Verifies the proof π and the signature σ.

4. Upon success of all verifications he signs the vote Et, σ
′ = SignsgAi (Et), stores it and

sends xi to the voter V through the secure post-channel. If any of the verification
steps fails he stops and notifies the voter about a forgery.

• The Tallier:

– When the election is over the tallier gets the signed votes from a predefined sever,
verifies the server’s signatures and runs a suitable decryption protocol.

Anthi A. Orfanou 73

Voter-Verifiable Internet Voting Protocols

Voter V

Submits x

PC

Pick x1, . . . , xk ∈ Zm

s.t. x = x1 + . . . xk mod m

Et = Encpkt(x)

∀ i ei = EncpkAi
(xi)

∀ i Ci = Comg,h(xi)

ZKP π: x ∈ [0, N − 1]

AND x =
∑

i xi mod m

Tallier (pkt, skt)

Server A2 (pkA2
, skA2

)

Verify C2 ↔ Open(C2)

Check ZKP π

Server Ak (pkAk
, skAk

)

Verify Ck ↔ Open(Ck)

Check ZKP π

Server A1 (pkA1 , skA1)

Verify C1 ↔ Open(C1)

Check ZKP π

.........

x

Et, e2, C1, ..., Ck
, Open(C2)

E
t , e
k , C

1 , ..., C
k , O

pen(C
k)

Et
, ek
, C

1
, ..
., C

k
, O
pe
n(C

1
)

Et

x1

x2

xk

C2

C2

C1

Ck

CkC1

Figure 4.4: Overview of the splitting-vote verification protocol

Anthi A. Orfanou 74

Voter-Verifiable Internet Voting Protocols

be successfully submitted undetected. No attacker can access the untappable post-channel by

default.

Privacy guarantees. Regarding vote privacy the PC sees the submitted vote like in all

previously proposed protocols, which happens inevitably to avoid approaches like code voting.

Each online server obtains a share xi of the vote which reveals no useful information, being

randomly chosen. Each server that sees two shares xi, x
′
i ∈ Zm that correspond to two not nec-

essarily different candidates x = xi+
∑

i 6=j xj and x′ = x′i+
∑

i 6=j x
′
j, cannot distinguish between

xi, x
′
i. This property implies that even in case of re-voting the servers cannot distinguish if the

voter votes for a new candidate of not, unlike the previous protocols, since shares xi for the

same vote in two different submission are unrelated and random. Hence if each entity executes

each part honestly no information regarding the vote is leaked.

Example 4.1. Let us consider an example of small scale elections with 9<10 candidates. In

the billowing table we see the values seen by the voting servers and how they hide they cannot

be correlated on their own with the actual votes.

Server 1 5 4 9 6 2 5 1

Server 2 4 7 3 7 8 9 2

Server 3 2 3 9 5 4 4 5

Actual votes 1 4 1 8 4 8 8

By using a simple k-out-of-k secret sharing scheme to split the vote privacy is breached

only in the case of coalition of all online servers who can combine their shares and get the

initial vote. As we do not distinguish between the voting servers, by adding multiple servers

we overcome the main vote secrecy drawback of the previous protocols. The scheme guarantees

that as long as one voting server remains honest the vote is perfectly secure. We do not exam-

ine coalitions between voting server’s and personal computers in terms of integrity since in any

vote/code verification protocol the PC can trivially break privacy by announcing the vote it sees.

Integrity guarantees. Regarding vote integrity, which is the main target in the pres-

ence of untrusted platforms, our protocol guarantees that the PC is incapable of altering a

vote undetected. The opening of the commitments combined with the range proof prevents the

Anthi A. Orfanou 75

Voter-Verifiable Internet Voting Protocols

PC from modifying the vote in a way that will lead in a successful vote reconstruction on the

voter’s side. Any other attempt of altering the vote will be detected through the reconstruction

of a wrong candidate number. No malicious voting server can submit fake ballots on behalf an

honest voter, as votes are signed. Nonetheless all voting protocols that allow re-voting, in order

avoid coercion, cannot guarantee that the vote collector forwards the correct vote to the tallier.

Thus in case a corrupted voting server forwards the votes to the tallier we have no means to

check that he sends the most recently submitted vote on behalf of the voter. Without re-voting

any verifiable shuffle cryptographic scheme would be enough to guarantee the integrity of the

outcome.

In the corruption scenario where a malicious PC collaborates with a malicious server that

deviates arbitrarily from the protocol, a forged ballot y can be submitted instead of x, by

sending to the honest servers the fake ballot y accompanied by valid commitments to the

shares yi. The corrupted server should ignore all the necessary checks and forward the share

x∗i = x −
∑k

j=1,j 6=i yj mod m to the voter, with yj being the shares of the forged ballot stored

by the honest servers. We underline that this is a strong corruption scenario requiring the full

collaboration of a malicious PC and the voting server, which is also present in all previous

approaches, where the collaboration of a malicious PC and messenger can submit fake ballots.

Unfortunately we cannot eliminate this attack by adding more servers, since as long as one

malicious server A∗i deviates from the protocol the voter obtains the correct value, while a fake

ballot is submitted.

4.1.6 Complexity analysis

Below we give a summary of the complexity of the k-server protocol, (k ≥ 2) counting the num-

ber of online exponentiations, signatures and signature verifications that each entity performs.

• The PC: Encrypts the vote x as well as each share xi, i = 1, . . . , k and computes the

Pedersen commitments of the shares and encryptions of their opening, requiring 6k + 2

exponentiations. To create the valid range proof the PC commits to all ν = blog2(N −1)c
components of x and runs ν single bit proofs requiring 4blog2(N − 1)c exponentiations,

depending on the number N of the candidates. Finally the valid shares proof requires 3

exponentiations for the commitment step and 5(k − 1) exponentiations for the simulated

Anthi A. Orfanou 76

Voter-Verifiable Internet Voting Protocols

steps. All the above yield an overall complexity of 4blog2(N − 1)c+ 11k exponentiations.

In addition the PC needs to sign one message.

• Server Ai: Decrypts two values and verifies a commitment with 4 exponentiations. Run-

ning the verification part of the range proof requires 4ν exponentiations for the single

bit proofs plus ν exponentiations for verifying the validity of the representation. The

verifications part of the valid shares’ proof requires 5k exponentiations, giving a total of

5blog2(N − 1)c + 5k + 4 exponentiations for each voting server. Additionally the sever

performs one signing and one signature verification.

4.2 Extension to code verification

4.2.1 The trusted channels and the security codes

Our proposed protocol is ideal for small scale elections since it can be used immediately for

voting, requiring no previous registration and distribution of security codes, if we have access

to an untappable channel, i.e. a channel that cannot be either read or written by an attacker.

All existing code verification protocols [1] [2] demand a secure post-channel where the attacker

has no “write” access, to eliminate forged ballot submission by overtaking a PC and the post-

channel. However, since the channel was used to post (pseudo)random values, an attacker that

reads the channel obtained no useful information. Our protocol transmits the shares of the

actual vote through the channel, dictating to keep the post-voting channel completely hidden

from the attacker, otherwise privacy is lost with the attacker obtaining the vote similar to the

voter.

If we need to eliminate the assumption of a completely secure real-time channel we need to

sent over the post-channel security codes, which are generated for each voter specifically during

a setup phase run by trusted servers, and distribute them before the elections using a secure

pre-channel. In order to achieve privacy the attacker should not be able to tamper with the

channel in any of the following ways:

• An attacker should not be able to write in the pre-channel or re-arrange its contents.

• An attacker should not be able to write in the post-channel.

Anthi A. Orfanou 77

Voter-Verifiable Internet Voting Protocols

• An attacker may read the contents of either the the pre-channel or the post-channel but

not both of them.

Requesting that the attacker cannot alter the contents of the channels is a necessary require-

ment, since otherwise he could substitute the correct values by values of his own choice causing

possible fake vote submission or reception of wrong security codes and skepticism about the

system’s credibility. Furthermore we require that the attacker cannot read both channels since

by obtaining all the secrets of the voter he violates privacy. The usual implementation of the

channels as paper mail that includes a voting card and SMS with the security codes (or their

shares) satisfies our security requirements.

The security codes are necessary in order to assure the voters that their votes reached the

voting servers while preventing the post-channel from leaking information regarding the vote

to an attacker that reads its contents. We propose a simple approach for creating the security

codes with an adaptation to the original protocol. We create the security codes through an

one time pad scheme of the actual votes, setting the code for voter V and candidate x to be

x+ bV mod m, with bV being a secret “padding” value, selected for each voter and possessed by

the voting servers in a secret-shared form. The new protocol satisfies our security model with

a third property regarding the channel’s security, namely post-channel secrecy stating that an

observer of the post-channel can not extract any information about the submitted vote from

the security codes. Specifically we need that ∀ c ∈ Code,∀ x ∈ Cand Pr[c = code(x)] = c0

where c0 ≥ 0 is a constant. .

4.2.2 First code verification protocol

We proceed by describing our first code verification adaptation. During code generation and

set-up phase, for each voter V we pick a set of k values {b1V , b2V , . . . , bkV } ← Zk
m, compute

bV =
∑k

i=1 biV mod m and set the code for candidate x to be codeV [x] = x+ bV mod m. Then

we send the corresponding pairs 〈x, codeV [x]〉 to the voter V , through the secure pre-channel,

and the values 〈V, biV 〉 to the voting server Ai. During election phase a voter casts a vote for

x through her personal computer, which functions identically to the original protocol. The

same holds for the voting servers that verify the additive relations and the range proof, but

upon success, instead of the share xi, each server Ai forwards the value ci = xi + biV mod m

which is sent through the secure post-channel. Finally the voter adds the received code shares

Anthi A. Orfanou 78

Voter-Verifiable Internet Voting Protocols

∑k
i=1 ci =

∑k
i=1 xi+

∑k
i=1 biV = x+bV mod m and verifies it matches the security code codeV [x].

To avoid storing the padding values biV for each voter in the voting servers, we generate

them using a suitable pseudo-random function family {F} : {0, 1}n × {0, 1}n → Zm, where

n bits suffice for representing all voters. For each server Ai a secret key kAi ∈ {0, 1}n for

a function f ∈ F is chosen and values biV are set to be fkAi (V). Thus upon receiving a vote

from voter V the server Ai generates the correct code share computing ai = xi+fkAi (V) mod m.

4.2.2.1 Security guarantees

In this approach, if the attacker reads the post-channel he can reconstruct only the security

code from which he cannot extract the vote. Both our encoding domain and code domain are

Zm since the codes correspond to a fixed cyclic swift of positions. The scheme leaks no in-

formation about the vote to an attacker of the post-channel, since any code could correspond

to different candidates for different padding values. It provides the security guarantees of the

original approach plus the channel privacy requirement. In this setting re-voting is not allowed

since an attacker of the post-channel learns the relative difference of the submitted votes, which

leaks the voting pattern and critical information about the vote if the elections use a subset

ZN ⊆ Zm and not the whole domain.

4.2.3 Second code verification protocol

For important elections coercion is considered a main threat which should be dealt with re-voting

(or other applicable approaches), while for low-coercion elections re-voting is not a necessary

feature of voting protocols, yet it remains desirable. In order to overcome the drawback of the

previous scheme that reveals information about the votes in re-voting, a natural approach would

be to restrict the candidate encodings and padding values to ZN , transforming the protocol to

work under modulo N operations, for an arbitrary number of candidates, instead of modulo m

for a fixed power of 10. Under this transformation for any difference value δ of two submitted

votes there are always N possible pairs of candidates that differ by δ, so that the attacker can-

not eliminate any options about the vote. However, we have chosen m to be a power of 10 to

allow easy operations on the voter’s part, who we assume incapable of executing modular addi-

tions in general. Hence we can employ a setting similar to existing code verification protocols [4]

Anthi A. Orfanou 79

Voter-Verifiable Internet Voting Protocols

[1] where a single entity forwards the code to the voter, who just compares it with her code sheet.

For this purpose we introduce a new server that is responsible to compute the code from

the code shares and send it to the voter. Unlike previous protocols, where the messenger server

contributed to the code reconstruction by applying secret values, our new entity will be an

untrusted server that posses no secrets. The only function of this server, which we call the cal-

culator sever, is to perform modular addition of the shares ci = x+ bV i mod N he receives from

each voter, obtaining code =
∑k

i=1 ci mod N . Finally he sends the code to the voter through

the post-channel. The protocol is depicted in figure 4.5.

4.2.3.1 Security guarantees and overhead

Since our first code verification attempt satisfies privacy guarantees against an attacker of the

post-channel the same holds for the calculator who sees exactly the same information when

each voter submits exactly one vote. In case of revoting both the calculator and an observer of

the post-channel learn the relative difference between the submitted ballots, yet for any candi-

date there is another candidate that yields the fixed difference. Hence we obtain a secure code

verification protocol that achieves all necessary security requirements and supports re-voting,

inheriting the security properties of our code verification protocol and security against the post-

channel. The protocol introduces an corruption scenario, present in all previous protocols [4]

[1]: the coalition of a malicious PC and a malicious calculator can submit undetectably forged

ballots. In this scenario the malicious PC, after the voter submits her ballot, re-submits a

forged ballot. The malicious calculator server drops the second security code that corresponds

to the fake ballot and forwards only the first code he has recorded. We note that this attack

is present in all code verification protocols where a single entity is responsible for sending the

security codes. In our protocol if the malicious PC wants to submit a fake ballot then it must

compromise either the calculator server and apply the previous attack or one voting server who

sends a modified code share, like in the attack in our vote verification protocol.

Regarding the protocol’s complexity, as trade-off for the user’s convenience and re-voting

option, we add more cryptographic operations to achieve privacy, since each voting server should

encrypt his code share ci and send it to the calculator, who decrypts and adds k values. Hence

we have an additional overhead of 3k exponentiations, 2k for each server and k for the calcula-

Anthi A. Orfanou 80

Voter-Verifiable Internet Voting Protocols

tor, corresponding to k encryptions and decryptions.

4.3 Extension to visual vote verification

In this section we introduce the visual vote verification protocol, that provides visual receipts

whose overlaying reveals the submitted vote. Based in our vote verification protocol we pro-

posed, we derive a visual verification scheme for small scale elections. The protocol uses two

voting server and requires the existence of the untappable one-way channel to forward the visual

shares to the voter.

Our approach uses visual receipts in a new way, going further that concealing black and

white pixels through seemingly random patterns. We use black and white shares of an image,

that is split between two online voting servers, who forward them to the voter for verification.

We introduce a visual encoding of the votes so that their shares leak no useful information on

their own, while their combination reveals the vote. The only action needed by the voter is to

overlay visually or mentally the provided images and deduce the number of white cells, which

correspond to the submitted vote. Hence we achieve a user-friendly and easy way to verify votes

in remote voting.

4.3.1 Previous work

Our motivation is derived from Shamir and Naor’s visual 2-out-of-2 secret sharing protocol [27]

that uses subdivisions of pixels containing 2 black and two white cells to share a visual secret,

i.e. a black or white pixel (see figure 4.7). In this setting a pixel is black if it contains at least

4 black cells and white is it contains at most 2 black cells. Complementary shapes yield fully

black pixels while identical shapes while half-black or white pixels according to our threshold.

The idea of providing visual receipts in electronic voting is not new, as it was first described

by Chaum [28], who gave a scheme for providing visual receipts in kiosk-voting. Chaum exploits

the ideas of Naor and Shamir’s visual secret sharing to conceal the written form of the submitted

candidate in a black and white image. The scheme applies only in supervised voting as it requires

the use of a special receipt printer that can print an image in two complementary transparent

Anthi A. Orfanou 81

Voter-Verifiable Internet Voting Protocols

Voter V

Submits x

CodeV [x]
?
= code

Set-up

∀ V, i = 1, . . . , k

bV i ← ZN

CodeV [x] = x+
∑

i biV mod N

PC

Pick x1, . . . , xk ∈ ZN

s.t. x = x1 + . . . xk mod N

Et = Encpkt
(x)

∀ i ei = EncpkAi
(xi)

∀ i Ci = Comg,h(xi)

ZKP π: x ∈ [0, N − 1]

AND x =
∑

i xi mod N

Calc Server (pkc, skc)

∀ i ai = Decrskc
(ci)

code =
∑k

i=1 ai mod N

Tallier (pkt, skt)

Server A2 (pkA2
, skA2

), bV 2

Verify C2 ↔ Open(C2)

Check ZKP: x =
∑

i xi mod N

Check ZKP: x ∈ ZN

c2 = Encpkc
(x+ b2V mod N)

Server Ak (pkAk
, skAk

), bV k

Verify Ck ↔ Open(Ck)

Check ZKP: x =
∑

i xi mod N

Check ZKP: x ∈ ZN

ck = Encpkc(x+ bkV mod N)

Server A1 (pkA1
, skA1

), bV 1

Verify C1 ↔ Open(C1)

Check ZKP: x =
∑

i xi mod N

Check ZKP: x ∈ ZN

c1 = Encpkc
(x+ b1V mod N)

.........

x

Et , e2 , C1 , ..., Ck , Open(C2)

E
t , e
k , C

1 , ..., C
k , O

pen(C
k)

Et, ek
, C1, ...

, Ck, O
pen(C1)

Et

c1

c2

ck

{Ci}ki=1

{Ci}ki=1

code

CodeV [x]

Figure 4.5: Overview of the code verification protocol

Anthi A. Orfanou 82

Voter-Verifiable Internet Voting Protocols

Figure 4.6: Chaum’s visual receipts

sheets. The overlaying of both sheets reveals a receipt of the vote and the hiding property of

the 2-out-of-2 secret sharing scheme used ensures that each share leaks no information about

the submitted vote. An example of printing the visual receipts is given in figure 4.3.1 (source

[28]).

After submitting a vote the and the receipt is printed, the user decides which sheet she will

keep as a receipt of her vote. The fact that printing takes place before the final choice of the

sheet to be kept ensures that the voting machine will be honest and cannot change the contents

of the ballot without risk to be detected with 1/2 probability by the user. After making her

selection the user verifies the vote by overlaying the printed images and the selected sheet is also

posted publicly on the ballot box. Later the voter can verify that her ballot was cast correctly

by accessing the ballot box and comparing her receipt sheet with the one corresponding on the

posted receipt under the same ballot identification number. The other receipt sheet is destroyed

by the officials supervising the elections to achieve receipt-freeness.

Vote submission and consequently counting is different from the schemes we have discussed

so far. The ballot box stores a copy of the receipt sheet chosen by the voter which is used from

the voting system to reconstruct the initial vote as human readable plaintext image. The en-

cryption used corresponds to an one-time-pad scheme with the chosen receipt being the vote to

be encrypted and the complementary sheet being the secret key. Tallying takes place by using

specialized software that identifies the final images and counts the ballots. A tabulation process

transforms the posted receipts into the original images to be tallied. This phase takes place

after the end of the elections and is performed by a set of tallier servers that mix the votes to

Anthi A. Orfanou 83

Voter-Verifiable Internet Voting Protocols

ensure anonymity while changing the vote coding to gradually reveal the vote through a number

of steps. The posted receipt is passed through all participating servers and is transformed in

each step: the input image is combined with a secret image possessed by each server and for

each white pixel of the aligned image a pixel symbol is printed in a new sheet, while for each

black pixel a different pixel is printed. The new image is given as input to the next server and

the process continues to the final step that reveals the vote.

4.3.2 The visual vote encoding

We begin our discussing by defining the appropriate vote encoding the facilitates visual vote

verification. Our construction is based on the fact that each candidate is represented by a

number of white cells within the receipt image, independently of their order, allowing a candi-

date to have multiple visual representations. It follows that the number of candidates affects

the number of cells required to encode our options without revealing information about the vote.

Our construction represents visually a candidate as an image with black and white cells that

has a 1-1 correspondence to a bit-string with “1” denoting a black cell and “0” a white cell.

The visual representation of vote is split in two images whose overlaying yields the initial vote.

When overlaying the visual shares a white cell is created when two white cells are aligned, while

the alignment of a black cell with any other cell yields a black cell. We model visual overlaying

as the bit-wise OR operation on the bit-strigs that correspond to the visual shares. We map

each candidate x into a set of visual descriptors {Dx}x∈Cand ⊂ {0, 1}λ, for an appropriate choice

of λ bits, with every string in {Dx} having exactly x zeros. This encoding imposes an expo-

nential increase in the domain requiring λ = min{4, 2dlog2(N−1)+1e} visual bits for N candidates,

normally represented by [log2(N − 1)] + 1 bits. We will see that this increase is necessary to

guarantee voter privacy against the voting servers.

Our building block for the visual vote representation is the 4-cell image of Naor and Shamir’s

2-out-of-2 secret sharing, through images with exactly two black and to white cells. As 4 cells

suffice for encoding 3 options, with zero, one or two white cells respectively, for a candidate

x ∈ {0, 1, 2} we have some randomly selected valid visual shares v1, v2 ∈ {0, 1}4 with equal num-

ber of “1” and “0” such that the value v = v1∨v2 has x zeros, where ∨ denotes the bit-wise OR

operator and v ∈ Dx is the visual representation of candidate x. We extent the visual encoding

Anthi A. Orfanou 84

Voter-Verifiable Internet Voting Protocols

1010 0011 1001

0101 1100 0110

Figure 4.7: The visual building block

Figure 4.8: 8-bit and 16-bit subdivisions of the building block

to an arbitrary number of N candidates by sub-dividing each cell in our building block. We

repeating this procedure until we have λ = (2dlog2(N−1)+1e) cells, that are sufficient to encode N

candidates without revealing information. We observe that each distinct old pair of opposite

angles yields a new building block, which we require to have equal number of black and white

cells (see figure 4.8).

We wish to design a scheme based on Naor and Shamir’s 2-out-of-2 simple secret sharing

scheme [27] for an arbitrary number of candidates. Thus we double the number of cells by

sub-dividing each cell of our building block as many times as we need in order to have sufficient

number of cells (say λ cells) so that λ/2 + 1 ≥ N , where λ = 4µ. By this construction we allow

half cells to be black and half cells to be white, generalizing the property of the 4-cell image.

Each sub-division yields new quadruples of cells that are treated for simplicity as a new building

block. We chose to consider distinct pairs of opposite angles as our 4-cell building block, which

is captured in the properties of the valid visual representations. As the number of white cells

in an image denotes the candidate number that was submitted, λ cells suffice for representing

λ/2 + 1 candidates, implying the relation λ = 2dlog2(N−1)+e.

Anthi A. Orfanou 85

Voter-Verifiable Internet Voting Protocols

4.3.3 The ideal security model and our guarantees

Let us define the properties of a scheme, which we refer as k Visual Sharing of Shape Descriptors

(VSSD). In VSSD we wish to represents the elements of a group through splittable visual shares

that can be reconstructed visually to yield the representation of the original input.

• Let (Λ,∨) be a commutative semigroup. Let {Dx}x∈Cand be the set of visual descriptors

and Λ the set of valid visual shares. Let P : Cand → 2Λk be the encoding function,

mapping candidates to all possible splitting in visual shares. Then a VSSD scheme must

fullfil the following properties.

• Solvability: ∀x ∈ Cand ∀(v1, . . . , vk) ∈ P (x) it must hold that ∨ivi ∈ Dx.

• t-Resilience: ∀W ∈ (Λ ∪ {∗})k (having t fixed values and k − t “ ∗ ” unknown values)

it must hold that ∀x ∈ Cand ProbA←P (x)[W v A] = c, where c ≥ 0 is a constant and

W v A represents that W is part of visual representation A .

Our security guarantees. For our protocol we will need to relax the above security

property of t-resilience, to achieve a user-friendly vote verification at the expense of a weaker

model of privacy. Our scheme will focus on the 2-VSSD problem, working with 2 voting servers.

In the setting our privacy guarantee states that given a visual share W of a vote x the share

W may be part of a representation of any vote x′ ∈ Cand and we extract no useful information

than those the were known before we saw share x.

4.3.4 Our visual sharing shape descriptor construction

In our construction we will split a visual representation into two shares. Below we describe the

properties of our 2-VSSD construction.

Construction of valid visual shares. Let x be a candidate and {v1, v2} ∈ Pλ(x),

v1, v2 ∈ Λλ, a set of its corresponding λ-bit visual shares. Then the following must hold:

• vi ∈ {0, 1}λ, for i = 1, 2.

Anthi A. Orfanou 86

Voter-Verifiable Internet Voting Protocols

Result= 4 white 3 white 2 white 1 white full black

share v1

share v2

v = v1 ∨ v2

Figure 4.9: Example of encoding of 5 candidates using the same fixed share v1.

• Let vi = (vi0vi1vi2 . . . viλ
2
viλ

2
+1 . . . vi,λ−1), for i = 1, 2. Then each pair of bits (vij, vi,j+1) for

j = 0, 2, . . . , λ
2
− 2 shares with the pair (vi,j+λ

2
, vi,j+λ

2
+1) exactly two “0” and two “1”.

Construction of valid visual encodings. Let x be a candidate and Dλ
x the set of all

valid visual λ-bit representations for this candidate. Then for all v ∈ Dλ
x it must hold that:

• v ∈ {0, 1}λ.

• Let v = (v0v1v2 . . . vλ
2
vλ

2
+1 . . . vλ−1). Then each pair of bits (vj, vj+1) for j = 0, 2, . . . , λ

2
−2

shares with the pair (vj+λ
2
, vj+λ

2
+1) at most two “0”.

• The number of “0” in v equals x.

Figure 4.10 depicts the valid shares for an 8-bit constructions Λ8 and figure 4.9 provides an

example of encodings all possible 5 candidates with elements of Λ8.

4.3.5 Vote submission and verification

Having described the properties of our visual encoding we are ready to design the visual vote

verification protocol. Our protocol works over a finite cyclic group G ⊂ Zp of prime order q,

with large primes q|p− 1 and {0, 1}λ ⊂ Zq, such that we can use additive ElGamal and commit

Anthi A. Orfanou 87

Voter-Verifiable Internet Voting Protocols

Figure 4.10: All valid shares of Λ8 that are sufficient for encoding up to 5 candidates.

Anthi A. Orfanou 88

Voter-Verifiable Internet Voting Protocols

to visual representations by Pedersen commitments.

To cast a vote for candidate x a voter inputs the globally known value x to her com-

puter. The PC encrypts and submits the vote and picks set of valid visual representation shares

{v1, v2} ∈ P (x) for the vote. The PC prepares a proof of compatibility of the visual represen-

tation vx = v1 ∨ v2, the shares v1, v2 and the vote x. It commits to each bit of vx, v1, v2 as

Cxj, C1j, C2j for all j = 0, . . . , λ−1 and proofs validity of bit commitments and the bit-wise OR

relation using a Schnorr OR proof (figure 4.11). The latter is proved based on the fact that for

all bits j = 0, . . . , λ− 1 if vxj = v1j + v2j, if the bits correspond to correct visual representations

of the vote then the commitment CORj = (C1jC2j)/Cxj hides a value in {0, 1}. The table in

figure 4.12 shows the possible bit combinations.

In addition the PC proves that vx = v1 ∨ v2 is a valid visual representation of x by prov-

ing that the corresponding bit commitments hide exactly x zeros, showing that the com-

mitments Cx = gxpkrt and gN/
∏λ−1

j=0 Cxj hide the same value. This done by using the zero

knowledge proof that two commitments open in the same value of figure 4.1. The full proof

π′ = PK(x, r, {(vij, rij}λ−1
j=0)i=1,2,x | ({Cij = gvijhrij ∧ vij ∈ {0, 1}}λ−1

j=0)i=1,2,x ∧ {(C1jC2j/Cxj) =

gbjh(r1j+r2−rxj) ∧ bj ∈ {0, 1}}λ−1
j=0 ∧ Ex = Enc

r∈Zq
pkt

(gx)∧ x = N −
∑λ−1

j=0 vxj) is given in protocol

19, adapting the techniques of [17].

Each server receives a share and verifies its compatibility with the encrypted vote, check-

ing that it is of the appropriate form. Upon successful verification the server forwards the

corresponding image to the voter through the untappable channel. Then the voter can verify

visually the result by overlaying the images and concluding about the number of white cells.

When elections are over, one of the online servers forwards to the tallier the encrypted vote.

4.3.6 Security and complexity properties

The visual verification protocol we propose is an extension of the vote verification protocol in

the restricted case for two voting servers. Hence it guarantees that a submitted vote remains

unchanged or the voter is notified about a forgery in the presence of a malicious PC, as she

reconstructs a wrong visual receipt.

Anthi A. Orfanou 89

Voter-Verifiable Internet Voting Protocols

Public Input: g, h

C = gvhr

Prover Verifier
Private input: v ∈ {0, 1}, r
Case v = 0:

w, c2, ρ2
r←− Zq

y1 = hw, y2 = hρ2(C/g)−c2

Case v = 1:

w, c1, ρ1
r←− Zq

y1 = hρ1(C)−c1 , y2 = hw
y1, y2

−−−−−−−−−−−−−−−−−→

c
r←− Zq

c
←−−−−−−−−−−−−−−−−−

Case v = 0:
c1 = c− c2, ρ1 = w + c1r
Case v = 1:

c2 = c− c1, ρ2 = w + c2r
c1, c2, ρ1, ρ2

−−−−−−−−−−−−−−−−−→ c
?
= c1 + c2

hρ1
?
= y1(C)c1

hρ2
?
= y2(C/g)c2

Figure 4.11: Schnorr OR ZK Proof

C1 C2 Cx C1C2/Cx OR Valid
g0hr1 g0hr2 g0hrx g0hr1+r2−rc 0+0=0 yes
g0hr1 g1hr2 g1hrx g0hr1+r2−rc 0+1=1 yes
g1hr1 g0hr2 g1hrx g0hr1+r2−rc 1+0=1 yes
g1hr1 g1hr2 g1hrx g1hr1+r2−rc 1+1=1 yes
g0hr1 g0hr2 g1hrx g−1hr1+r2−rc 0+0=1 no
g1hr1 g1hr2 g0hrx g2hr1+r2−rc 1+1=0 no

Figure 4.12: Bitwise OR combinations

Anthi A. Orfanou 90

Voter-Verifiable Internet Voting Protocols

Protocol 19 Proof of valid visual votes
Public Input: 〈p, q, g〉, h, pkt, N , λ = (2dlog2(N−1)+1e), Et = (Ex, Er) = (gxpkrt , g

r), ({Cij =
gvijhrij}λ−1

j=0)i=1,2,x. Prover’s Input: x, r, ({vij, rij}λ−1
j=0)i=1,2,x.

1. The Prover:

• For j = 0, . . . , λ− 1:

– For i = 1, 2, x:

∗ If vij = 0 he picks wij, c2ij, ρ2ij ← Zq and sets y1ij = hwij , y2ij =
hρ2ij(Cij/g)−c2ij .

∗ Else if vij = 1 he picks wij, c1ij, ρ1ij ← Zq and sets y1ij = hρ2ij(Cij)
−c1ij ,

y2ij = hwij .

– If v1j + v2j − vxi = 0 he picks wj, c2j, ρ2j ← Zq and sets y1j = hwj , y2j =

hρ2j(
C1jC2j

g·Cxj)−c2j .

– Else if v1j+v2j−vxi = 1 he picks wj, c1j, ρ1j ← Zq and sets y1j = hρ1j(
C1jC2j

Cxj
)−c1j ,

y2j = hwj .

• He picks w, ρ1, ρ2 ← Zq and sets y1 = gwhρ1 , y2 = gwpkρ2t

• He sends (y1, y2, {y1j, y2j}λ−1
j=0 , ({y1ij, y2ij}λ−1

j=0)i=1,2,x) to the Verifier.

2. The Verifier picks c← Zq and sends it to the Prover.

3. The Prover:

• For j = 0, . . . , λ− 1:

– For i = 1, 2, x:

∗ If vij = 0 he sets c1ij = c− c2ij, ρ1ij = wij + c1ijrij.

∗ Else if vij = 1 he sets c2ij = c− c1ij, ρ2ij = wij + c2ijrij.

– If v1j + v2j − vxi = 0 he sets c1j = c− c2j, ρ1j = w1j + c1j(r1j + r2j − rxj).
– Else if v1j + v2j − vxi = 1 he sets c2j = c− c1j, ρ2j = w2j + c2j(r1j + r2j − rxj).

• He sets s = w + cx, ρ′1 = ρ1 + cr, ρ′2 = ρ2 + c(−
∑λ−1

j=0 rxj)

• He sends (s, ρ′1, ρ
′
2, {c1j, c2j, ρ1j, ρ2j}λ−1

j=0 , ({c1ij, c2ij, ρ1ij, ρ2ij}λ−1
j=0)i=1,2,x) to the Verifier.

4. The Verifier accepts if all the following tests succeed, otherwise he rejects:

• For j = 0, . . . , λ− 1:

– For i = 1, 2, x: c = c1ij + c2ij and hρ1ij = y1ij(Cij)
c1ij and hρ2ij = y2ij(Cij/g)c2ij .

– c = c1j + c2j and hρ1j = y1j(
C1jC2j

Cxj
)c1j and hρ2j = y2j(

C1jC2j

g·Cxj)c2j .

• gshρ′1 = y1(Ex)
c and gspk

ρ′2
t = y2(gN∏λ−1

j=0 Cxj
)c.

Anthi A. Orfanou 91

Voter-Verifiable Internet Voting Protocols

Protocol 20 Visual Vote Verification
Let N be the number of candidates, λ be the bit-sting length for the encoding, h a randomly
chosen public key in G such that no one knows its discrete logarithm and (pkAi , skAi), (pkt, skt)
the public/secret key pairs of the online severs Ai (i = 1, 2) and the tallier respectively.

• The voter V casts a ballot for candidate x to her PC and waits for the images from the
voting servers.

• The PC:

1. Picks a valid visual representation vx ∈ Sx,λ for the candidate and shares v1, v2 ∈ Vλ
s.t. vx = v1 + v2.

2. Encrypts the vote as Et = Enc
ρ←Zq
pkt

(gx).

3. For each j = 0, . . . , λ − 1 it computes the Pedersen commitment to the j-th bit of
vx, v1 and v2 as Cxj = gvxjhrxj , C1j = gv1jhr1j , C2j = gv2jhr2j .

4. Commits to shares vi, i = 1, 2 , by the Pedersen commitment Ei = gvihρi where

ρi =
∑λ−1

j=0 rij2
j and encrypts the randomness Openi = Enc

r′i←Zq
pkAi

(ρi).

5. Encrypts each share vi, i = 1, 2, as ei = Enc
ri←Zq
pkAi

(vi).

6. Prepares a zero knowledge proof π′ = PK{µ, ρ, {(µij, ρij)λ−1
j=0}i=1,2,c | Et =

Encρpkt(g
µ) ∧ {(Cij = gµijhρij ∧ µij ∈ {0, 1})λ−1

j=0}i=1,2,x ∧ {µ1j + µ2j =

µcj}λ−1
j=0 ∧ (N −

∑λ−1
j=0 µcj = µ)}

7. Signs the encrypted message and the proof.

8. Sends (V,Et, singV (Et, π
′), ei, Ei, Openi, (C0, . . . , Cλ−1), (C1,0, . . . , C1,λ−1), (C2,0, . . . , C2,λ−1),

π′) to the server Ai, for i = 1, 2.

• Server Ai :

1. Sends to server Aj (j 6= i) the commitments {(Cik)λ−1
k=0}i=1,2,x and checks that the

received values from Aj match his values.

2. Verifies the voter’s signature.

3. Decrypts ei, Openi to obtain vi, ρi and verifies that Ei = gvihρi and checks that
vi ∈ Vλ.

4. Checks that Ei =
∏λ−1

j=0 (Cij)
2j and verifies π′.

5. If all checks are valid he sends the corresponding image to the voter through the post-
channel, stores the vote Et and signs it. Otherwise he complains about a forgery.

• The Tallier: Obtains the votes Et from a voting sever and runs an appropriate protocol
for decrypting and tallying the ballots.

Anthi A. Orfanou 92

Voter-Verifiable Internet Voting Protocols

The visual verification protocol we propose meets the relaxed criteria of 2-secure visual shar-

ing of shape descriptors we have defined. Clearly the protocol meets the solvability property,

which expresses the correctness of the scheme. Given to visual shares v1, v2 that are generated

through P (x) their visual overlying vi ∨ v2 = vx is a valid visual representation candidate x.

In terms of privacy, we obtain a protocol that ensures that given a single valid visual share

v1 ∈ Λλ, the share v1 may be part of a representation of any candidate x ∈ Cand, depending

on the other, unknown, visual share. Thus without having their relative position the shares on

their own carry no new information about the vote.

Let us clarify the notion of “new information” obtained from a share about a vote. Clearly

in our scheme there are votes x ∈ Cand that have bigger number of possible splittings |P (x)|
than other votes x′ ∈ Cand having |P (x′)| splittings, preventing us from achieving the t-resilient

property. We note that the voting server before seeing any share at all, knows that the proba-

bility that a share belongs in P (x) is higher than the probability that the same share belongs

in P (x′), having that ∀x ∈ Cand, ∀v ∈ Λ PrA←P (x)[(v, ∗) ∈ A] = px with px > px′ for any

such pair (x, x′) of candidates. Thus given a specific share v1 ∈ Λλ, the voting server obtains no

more information than those it already new about the possible encoding the share may belong.

Thus the knowledge of the actual share does not help it to identify the vote.

We now calculate the complexity of the visual verification protocol in terms of the value

λ = 2blog2(N−1)+1c which is linearly dependent in the number of candidates.

• The PC: The PC encrypts the vote and the visual two shares and the randomness used for

committing to them with 10 exponentiations. Moreover it computes the bit commitments

of the shares and the visual vote representation with 6λ exponentiations as well as the

commitments to the shares with 4 more exponentiations giving a total of 6λ+14 exponenti-

ations. Running the provers part of the zero knowledge proofs requires 9λ exponentiations

for the bit commitments and 3λ exponentiations for the bit-wise OR Schnorr proofs. The

prover’s part for the valid visual representation proof requires 3 exponentiations giving a

total of 18λ+ 17 exponentiations. In addition he performs one signing.

• The servers: Each server Ai decrypts 2 values and checks one commitment with 4 exponen-

tiations. The verification part of the zero knowledge proofs requires 12λ exponentiations

for the single bit proofs and 4λ exponentiations for the OR proof. The visual representa-

Anthi A. Orfanou 93

Voter-Verifiable Internet Voting Protocols

tion proof requires 5 exponentiations and the compatibility check of the bit commitments

and the commitment to the share requires λ exponentiations, giving a total of 17λ + 9

exponentiations.

Anthi A. Orfanou 94

Conclusion

In this thesis we have tackled the problem of untrusted voting clients in remote Internet voting.

We focused on the code verification protocols and reviewed the related work in the area. Our

contribution is summarized in designing a new vote verification protocol with enhanced vote

secrecy properties and no need for set-up phase for verification purposes, compared to the

previous approaches. We used a simple secret-sharing scheme to split a vote in several shares

given to different voting servers who perform validity tests and assure the voter about the correct

submission of the vote by providing receipts. We modify the protocol into the code verification

setting, proposed in the previous solutions, to relax the assumptions about the communications

channels we use, requiring a set-up phase as a trade-off. We also study the properties of the

visual sharing of shape descriptors and adapt the vote verification protocol so as to generate

images that work as visual receipts of the votes for a relaxed security model.

Future work

An interesting direction is to design t-resilent visual shape descriptor schemes, whiteout seriously

affecting the work required by the voter to verify her vote, which we want to be minimum. We

also believe that it would be worthy to extend out visual voting scheme into a scheme with an

arbitrary number of voting servers, using the notion of k visual sharing of shape descriptors, to

enhance voter privacy guarantees. Such an adaptation would require to re-examine the format

and the properties of the valid visual votes and shares, so that no critical information is leaked

to reasonably sized coalitions of malicious voting servers. In addition it would be interesting to

examine the possibility of designing visual code verification protocol with two or more voting

servers. We also believe that it worthy to examine the application of visual sharing of shape

descriptions to more general settings, like secure multiparty computation, where intermediate

entities send data in part of users that need to verify the correct recording of their data from

the other parts.

Anthi A. Orfanou 95

Abbreviations

DDH Decisional Diffie Hellman

DL Discrete Logarithm

E-Voting Electronic Voting

EUF-CMA Existential Unforgeability against Chosen Plaintext Attack

IND-CPA Indistinguishability against Chosen Plaintext Attack

Mix-Net Mixing Network

MS Messenger

OT Oblivious Transfer

PC Personal Computer

POT Proxy Oblivious Transfer

PK Proof of Knowledge

PRF Pseudo-random Function

VC Vote Collector

VSSD Visual Sharing of Shape Descriptors

ZKP Zero Knowledge Proof

Anthi A. Orfanou 96

Bibliography

[1] “On E-Vote Integrity in the Case of Malicious Voter Computers”, Sven Heiberg, Helger

Lipmaa and Filip van Laenen. In Proceedings of 15th European Symposium on Research

in Computer Security ESORICS ’10, Springer, 2010.

[2] “Analysis of an Internet Voting Protocol”, Kristian Gjøsteen. Technical Report 2010/380,

International Association for Cryptologic Research, July 5, 2010.

[3] “Analysis of an Internet Voting Protocol”, Kristian Gjøsteen. Technical Report,

http://www.regjeringen.no , March, 2010.

[4] “The Norwegian Internet Voting Protocol”, Kristian Gjøsteen. Proceedings of the Third

International Conference on E-voting and Identity VoteID, Springer, 2011.

[5] “Pretty good democracy”, Peter Y. A. Ryan and Vanessa Teague . In Workshop on Security

Protocols, 2009.

[6] “Two Simple Code-Verification Voting Protocols”, Helger Lipmaa. IACR Cryptology ePrint

Archive 2011: 317, 2011.

[7] “SureVote”, David Chaum. International patent WO 01/55940 A1 (02 August 2001),

http://www.surevote.com/home.html

[8] “Priced Oblivious Transfer: How to Sell Digital Goods”, William Aiello, Yuval Ishai, and

Omer Reingold. In Proceeding of EUROCRYPT’01, Springer-Verlag 2001.

[9] “Oblivious Transfer And Polynomial Evaluation”, Moni Naor and Benny Pinkas. Proceed-

ings of the Thirty-First Annual ACM Symposium on Theory of Computing STOC’99, ACM

Press, 1999.

Anthi A. Orfanou 97

Voter-Verifiable Internet Voting Protocols

[10] “Security and Trust for the Norwegian E-Voting Pilot Project E-valg 2011”, Arne Ansper,

Sven Heiberg, Helger Lipmaa, Tom André Øverland and Filip van Laenen. Proceedings of

NordSec 14th Nordic Conference on Secure IT Systems, Lecture Notes in Computer Science

Springer, 2009.

[11] “Transparency and Technical Measures to Establish Trust in Norwegian Internet Voting”,

O. Spycher, M. Volkamer, R. Koenig. Proceedings of the Third International Conference

on E-voting and Identity VoteID, Springer, 2011.

[12] “Secure Electronic Voting Protocols”, Helger Lipmaa. The Handbook of Information Se-

curity, John Wiley & Sons, 2005.

[13] “A Secure and Optimally Efficient Multi-Authority Election Scheme”, Ronald Cramer,

Rosario Gennaro and Berry Schoenmakers. In Proceedings of EUROCRYPT ’97, Lecture

Notes in Computer Science, Springer-Verlag, 1997.

[14] “Commitment Schemes and Zero-Knowledge Protocols”, Ivan Damg̊ard. Lectures on Data

Security, Springer, 1999.

[15] “Non-interactive and information-theoretic secure verifiable secret sharing”, T. P. Pedersen.

In Advances in Cryptology/CRYPTO ’91, Lecture Notes in Computer Science, Springer-

Verlag, 1992.

[16] “How to Prove Yourself: Practical Solutions to Identification and Signature Problems”,

Amos Fiat and Adi Shamir, Crypto 1986.

[17] “Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols”, Ronald

Cramer, Ivan Damgard, and Berry Schoenmakers. In CRYPTO 1994, volume 839 of LNCS,

pages 174-187, Springer-Verlag, 1994.

[18] “Guaranteed Correct Sharing of Integer Factorization with Off-Line Shareholders”, W.

Mao. In Proceedings of Public Key Cryptography 1998, LNCS, vol. 1431, pages 60-71,

Springer, 1998.

[19] “Introduction to Modern Cryptography”, Jonathan Katz and Yehuda Lindell. Chapman

and Hall/CRC Press, 2007.

[20] Lecture notes in “Cryptography Primitives and Protocols”, Aggelos Kiayias.

Anthi A. Orfanou 98

Voter-Verifiable Internet Voting Protocols

[21] “Introduction to Cryptography: Principles and Applications”, Hans Delfs and Helmut

Knebl, Springer, 2007.

[22] “Mix and match: Secure function evaluation via ciphertexts”, M. Jakobsson and A. Juels.

In ASIACRYPT, 2000.

[23] “Electronic Voting”, Aggelos Kiayias. Handbook of Financial Cryptography, 2010.

[24] “Secure Vickrey Auctions without Threshold Trust”, Helger Lipmaa, N. Asokan, and Valt-

teri Niemi. In Proceedings of the 6th international conference on Financial Cryptography

’02, Springer-Verlag, 2002.

[25] “Additive Combinatorics and Discrete Logarithm Based Range Protocols”, Rafik

Chaabouni, Helger Lipmaa and Abhi Shelat. In Proceedings of ACISP ’10, Springer-Verlag,

2010.

[26] “A threshold cryptosystem without a trusted party”, T. Pedersen. In Advances in Cryp-

tology EUROCRYP ’91, volume 547 of Lecture Notes in Computer Science, pages 522-526,

Springer-Verlag, 1991.

[27] “Visual Cryptography”, M. Naor and A. Shamir. Proceedings of Eurocrypt ’94, Springer,

1994.

[28] “Secret-Ballot Receipts: True Voter-Verifiable Elections”, D. Chaum. IEEE Security and

privacy magazine, 2004.

Anthi A. Orfanou 99

	Introduction to Electronic Voting
	Cryptographic Background and Tools
	Hash Functions and Random Oracles
	Hash functions
	Pseudo-random functions
	Random oracles

	Commitments
	Pedersen's commitment scheme

	Signatures
	Zero-Knowledge Proofs of Knowledge
	The Schnorr protocol
	The Chaum-Pedersen protocol
	The disjunction of zero-knowledge proofs
	The conjunction of zero-knowledge proofs
	Range and set membership proofs
	Non-interactive zero-knowledge proofs

	Public Key Encryption
	The ElGamal crypto-system

	Oblivious Transfer
	The AIR 1-out-of-N oblivious transfer
	The proxy oblivious transfer

	Secret Sharing
	A n-out-of-n scheme
	Visual cryptography

	The Communication channels

	The Untrusted Platform Problem
	Code Voting
	Code Verification Voting
	The Proxy Oblivious Transfer Approach
	POT E-Voting
	Security guarantees and weaknesses

	The Pseudo-random Composition Approach
	The shared-key E-voting
	Vote encoding and tallying improvements
	Security guarantees and weaknesses
	Avoiding Coalitions

	A New Vote Verification Protocol
	The vote verification protocol
	The main idea
	Commitments' announcement
	Range proof
	Adding more voting servers
	Security guarantees and performance
	Complexity analysis

	Extension to code verification
	The trusted channels and the security codes
	First code verification protocol
	Security guarantees

	Second code verification protocol
	Security guarantees and overhead

	Extension to visual vote verification
	Previous work
	The visual vote encoding
	The ideal security model and our guarantees
	Our visual sharing shape descriptor construction
	Vote submission and verification
	Security and complexity properties

	Conclusion
	Abbreviations
	Bibliography

