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1 Introduction

To begin discussing the basic properties of cryptography and illustrate the current state of the
discipline we will consider a basic problem of trust related to coin tossing.

1.1 Flipping a Coin over a Telephone

Suppose Alice and Bob are talking on the phone, debating where they should go for the evening.
They agree to toss a coin to see who decides where they go. If Alice and Bob were in the same
physical location, they could easily flip a coin and both could verify the result. Since they want
to do this over the phone, they need a procedure that enables both parties to verify the outcome
and ensures that the outcome is unbiased.

To understand the solution, it is helpful to think conceptually how the problem can be solved
using a box. Alice tosses her coin and places it in the box. This forces Alice to be consistent and
prevents her from changing the result. Here the box constitutes a commitment mechanism.
Although Bob still needs to open the box and check the outcome, by employing the box, both
parties no longer need to be physically present simultaneously to toss a coin.

What can be the digital equivalent of a box? Let us consider the following. Suppose there
is a pre-agreed upon mapping f that sends each of 0 and 1 to a set of objects at random. The
mapping f will play the role of the box. To determine the outcome of the coin toss,

1. Alice flips a coin and receives a ∈ {0, 1}. She computes f(a).

2. Alice sends y = f(a) to Bob.

3. Bob flips a coin and receives b ∈ {0, 1}. He sends b to Alice.

4. If a = b, Alice calls Heads; otherwise Alice calls Tails.

5. Alice discloses the value of a and Bob verifies that y is a valid commitment to a.

6. Bob checks if a = b and confirms the result of Heads or Tails.

In order for this protocol to effectively solve the problem, f must satisfy the following prop-
erties:

1. The hiding property ensures f does not reveal any information about a.

2. The binding property requires that it be impossible for Alice to alter the value committed
to y = f(a) and still convince Bob of the validity of the commitment.

If both parties follow the protocol faithfully, the probability distribution of Heads and Tails is
uniform for both players; moreover, both parties reach the same conclusion. Let us now examine
what happens if a player deviates from the faithful execution of the protocol. Possible scenarios
in which the security of the protocol may be affected include:

1. After obtaining b in Step 3, Alice substitutes a′ for a such that y = f(a′).

2. Bob tries to guess a after receiving y and selects b accordingly.

3. One or both of the players toss their coin in a biased manner such that the probability of
Heads or Tails is no longer 1/2.

If f is chosen accordingly, y is committing to a certain a so the binding property prohibits
Alice from cheating in the first scenario. Similarly, in the second instance Bob should not be able
to effectively guess a because of the hiding property. The last scenario requires some calculation
to determine whether or not different probabilities of a and b affect the probability distribution
of the players’ chances. We have four possibilities.

1. Alice selects a = 0 with probability α, Bob selects b = 0 with probability β, and the output
is Heads;
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1.2 Overview of Cryptography 5

2. Alice selects a = 0 with probability α, Bob selects b = 1 with probability 1 − β, and the
output is Tails;

3. Alice selects a = 1 with probability 1 − α, Bob selects b = 0 with probability β, and the
output is Tails;

4. Alice selects a = 1 with probability 1 − α, Bob selects b = 1 with probability 1 − β, and
the output is Heads.

Then Prob[Heads] = αβ + (1− α)(1− β) = 1− α− β + 2αβ. If both players are dishonest, the
protocol will not necessarily function correctly. If one of the parties is honest, so α or β = 1/2,
then Prob[Heads] = 1/2. Based on the above, we may be able to argue that the protocol is
secure against malicious behavior in the following sense: no matter the behavior of a malicious
party, assuming that the protocol is executed in its entirety, a uniformly distributed probability
will be guaranteed to an honest party.

1.2 Overview of Cryptography

The previous example illustrates the research process of modern cryptography which can be
epitomized as follows.

1. Identify important problems in need of cryptographic solutions. These are typically prob-
lems of trust between two or more parties. As a rule of thumb, if the problem can be solved
by introducing a trusted “third” party that is connected to all the participants then the
problem can be solved cryptographically. For instance, we will see that the coin tossing
is an important problem that accepts a cryptographic solution and has numerous applica-
tions in constructing secure systems. Observe that it can be easily solved by employing a
trusted third party that will flip a coin and announce it to both Alice and Bob.

2. Formally defining security and correctness for all involved parties. This some times is called
the security model or threat model. It entails a formal definition of what the adversary is
allowed to do and what is the objective it has.

3. Specify what resources are available to the parties that are engaged in the protocol. For
instance in the solution above for coin flipping it was assumed that Alice and Bob both
have a coin and they can flip to produce local randomness.

4. Design a candidate solution that is in the form of a protocol or algorithm and syntactically
is consistent with the problem.

5. Determine a set of assumptions that are needed as preconditions for the solution to satisfy
the security model. In the above description we made two assumptions that were informally
stated about the function f , the binding and hiding properties.

6. Finally, provide a proof of security and correctness so as to convince that the system
satisfies the security and correctness specifications as defined in the formal security model.

In short, we will focus on the goals, designs, primitives, models, and proofs associated with
cryptography. The formal, or provable-security approach to the study of cryptography provides
mathematical proofs that an adversary’s objective is either impossible or violates an underlying
assumption in a model. An effective solution should satisfy the security model as extensively as
possible with the weakest possible assumptions.

The provable-security paradigm typically entails two things:

1. Constructing a formal security model and defining what it means for a given cryptographic
design to be secure; and

2. Demonstrating that the existence of an adversary capable of efficiently breaking the design’s
security is either impossible in the model or it can be transformed into an algorithm solving
a “computationally hard” problem, i.e., a problem that we assume infeasible to be solved.
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The second item points to an area of interest for us called computational complexity . This
discipline aims to answer questions such as “How many steps are necessary to solve a problem?”
or “How much space is required to find a solution to a problem?” One of the objectives of
computational complexity is to calculate the time required to find a solution to a problem. For
example, one of the fundamental open problems in computer science and mathematics relates to
the classes P and NP . P is the set of problems that can be solved in polynomial-time and NP is
the set of problems for which a candidate solution can be verified in polynomial-time. Although
significant effort has been devoted to understanding the relationship between these two classes,
it is still unknown if P 6= NP . It is known however, that many proofs of security would imply
P 6= NP . In order to understand this, observe the NP -nature of cryptography; namely that
secret keys play the role of the candidate solutions in a suitable NP problem. Unfortunately,
the fact that P 6= NP is not helpful in cryptographic security proofs. Such applications ask
for average hardness; that is, a random instance of a problem should be computationally hard,
while NP problems may be hard only in the worst-case.

An important tool that assists in the classification of computational problems is the concept
of reduction . Suppose there are two problems A and B and an algorithm α that solves A with
oracle access to B, written αB . We can appropriately define a pre-order ≤1 over all problems so
A ≤ B if and only if there is an algorithm α where αB solves A. This is a reduction.

Intuitively, A ≤ B implies that A cannot be substantially harder than B. Say, A is a well-
known hard problem, such as the factoring problem or the discrete logarithm problem (that
we will define in the sequel), and B corresponds to breaking the security of our cryptographic
construction. If A is acceptably hard and we can produce a reduction as is specified above, we
can assume our construction is provably secure.

Despite the fact that reductions provide little “real” proof of security, they are acceptable
given our general inability to construct a lower bound on the difficulty of computational prob-
lems.

2 Mathematical Review

Here we give a quick review of algebra, number theory, and probability. Further reviews will be
provided as necessary in subsequent sections. 2

2.1 Algebra and Number Theory

2.1.1 Groups

Definition 2.1.1. A group (G, ∗) is a set G together with a binary operation ∗ satisfying the
following conditions:

• G is closed under ∗: for all g, h ∈ G, g ∗ h ∈ G;

• The operation ∗ is associative: for all g, h, ` ∈ G, g ∗ (h ∗ `) = (g ∗ h) ∗ ` ∈ G;

• G contains an identity element e such that g ∗ e = e ∗ g = g for all g ∈ G;

• G is closed under inversion: for all g ∈ G, there exists g−1 ∈ G such that g∗g−1 = g−1∗g =
e.

Formally, a group is denoted by an ordered pair (G, ∗). We will write G when ∗ is clear from
the context.

Theorem 2.1.1. If G is a group under ∗, then G contains exactly one identity element and
every element of G has a unique inverse.

1A pre-order is a reflexive, transitive relation.
2For more mathematical review, see [1].
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Proof. For the first part, let e, f be two identity elements in G. Then we write:

e ∗ f = e ∗ f
e = e ∗ f, because f is an identity element

e = f, because e is an identity element

For the second part, let a−1 be an inverse of a (at least one such inverse must exist because
G is a group), and b be any element such that a ∗ b = 1 (the equivalent case where b ∗ a = 1 is
left to the reader). We have:

a ∗ b = 1

a−1 ∗ a ∗ b = a−1 ∗ 1 (we multiply both sides by it from the left)

b = a−1

In the above, we have also (indirectly) demonstrated that if a ∗ b = 1 then it must also hold that
b ∗ a = 1 even if ∗ is not commutative in general.

Definition 2.1.2. A group G is called Abelian (or commutative) if for all g, h ∈ G, g∗h = h∗g.

Definition 2.1.3. In a finite group G, the order of G is the size or number of elements in the
group, denoted #G or |G|.

Definition 2.1.4. For any group G and any nonempty subset H of G, we say that H is a
subgroup of G if H is closed under ∗ and also closed under inversion.

Definition 2.1.5. For a group (G, ∗) and g ∈ G, define the order of g to be the smallest
positive integer i such that gi = e, or equivalently, g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸

i times

= e. We denote the order of g

by ord(g).

Definition 2.1.6. For any g ∈ G we define 〈g〉 to be the set {gi : i ∈ Z}.
We can show that 〈g〉 is a subgroup of G. It is also clear that it has order ord(g).

Theorem 2.1.2 (Lagrange). In a finite group, the order of any element divides the size of the
group.

Lagrange’s theorem is extremely powerful, but for the time being we will point out two useful
corollaries for finite groups:

Corollary 2.1.2.1. For any g ∈ G, gord(G) = 1

Corollary 2.1.2.2. For any g ∈ G, gord(G)−1 = g−1

The proofs of both corollaries are left as exercises. In practice, the two corollaries give us a
way to cancel out or invert an element g even if we do not know its order.

Lagrange’s theorem also gives us a way to determine an the order of an element g, if the
group order is known: we only need to test each divisor of G as a potential order of g. The least
divisor d of G such that gd = 1 is g’s order.

Definition 2.1.7. If there is some element g ∈ G such that ord(g) = #G, then g generates G
and we call G a cyclic group. We write G = 〈g〉.

Proposition 2.1.1. Cyclic groups are Abelian.
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2.1.2 Elementary Number Theory

Definition 2.1.8. We say that a divides b iff there exists c such that b = ac. We denote this by
a|b.

Definition 2.1.9. A positive integer p is prime iff it is only divisible by 1 and itself.

Definition 2.1.10. We define gcd(a, b) to be the largest number d such that d divides both a
and b. If it is clear from the context, we may write gcd(a, b) as (a, b). When (a, b) = 1 we say
that a and b are coprime .

Lemma 2.1.1 (Bézout). For any a, b there exist x, y such that ax+ by = gcd(a, b)

Proof. Let δ = gcd(a, b). Let d be the minimum positive element of the set S := {ax+ by|x, y ∈
Z} (the set is non-empy as it contains e.g. a). We will show that δ = d.

As d is of the form ax+ by and δ divides both a and b it is clear δ|d, thus δ ≤ d.
We will now show that d divides a. We use euclidean division to write a = kd + r where

0 ≤ r < d. Equivalently, r = a− kd which implies r ∈ S. As r < d, this is turn implies r must
be zero, as d is the least positive element of S. Thus, d divides a. We repeat the argument to
show d also divides b. Thus d is a common divisor of a, b and must be d ≤ δ as δ is the gcd.

We have δ ≤ d and d ≤ δ, so it must be that d = δ.

We can use this to easily prove:

Lemma 2.1.2 (Euclid’s Lemma). If p divides a · b, then p must divide at least one of a, b.

2.1.3 The multiplicative group Z∗p
Definition 2.1.11. We denote congruence relationships over the integers by a ≡ b mod n if
and only if n | (a− b).

Definition 2.1.12. We denote the equivalence class ān of a number a ∈ Z modulo n as :
ān := {b : b− a ≡ 0 mod n}. Given a class an, we define the representative of the class as the
least positive member of the class.

Definition 2.1.13. We denote the set of integers modulo n as the set of equivalence classes
modulo n: Zn := {ān}.

When it is clear from the context we will use equivalence classes, their representatives and
their members interchangeably.

Example. Consider Z∗5 = Z5 − {0}. This is a cyclic group under multiplication modulo 5.

Proof. Closure under multiplication and associativity hold by inspection. The identity element
is 1, so it remains to show that each element g ∈ Z∗5 is invertible. Since 5 is prime, (g,5)=1 and
by Lemma 2.1.1 there exist x, y such that 5x+ gy = 1 in the integers. This in turn implies that
gy − 1 = 5x i.e.

gy ≡ 1 mod 5

Let us now investigate the structure of Z∗5. Our goal is to find g ∈ Z∗5 such that ord(g) =
#Z∗5 = 4 and therefore 〈g〉 = Z∗5. Clearly 〈1〉 6= Z∗5, so let us try 2:

20 ≡ 1 mod 5, 21 ≡ 2 mod 5, 22 ≡ 4 mod 5, 23 ≡ 3 mod 5, and 24 ≡ 1 mod 5.

Since 〈2〉 = {1, 2, 3, 4} and 2 has order 4, we say that 2 generates Z∗5.
It is possible for multiple elements to generate the group, so let us now try 3. By Lagrange,

ord(3) | 4. From our previous calculations, 23 ≡ 3 mod 5, so ord(23) = ord(3). Then 3ord(3) ≡
23ord(3) ≡ 1 mod 5 and 3ord(3) ≡ ord(2) mod 4. Since 3 and 4 are relatively prime, ord(3) = 4.
Thus 3 is another generator of Z∗5.
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2.1 Algebra and Number Theory 9

By the same argument, we can show 4 is not a generator. From the above, 22 ≡ 4 mod 5, so
ord(22) = ord(4). We know that 2 (the exponent in 22) divides 4, therefore gcd(2, 4) divides 4.
Moreover, ord(4) = 4/ gcd(2, 4) = 2. This implies #〈4〉 = 2, so 4 is not a generator: 〈4〉 = {1, 4}.

A useful tool in Z∗p, is Fermat’s little theorem, which can be easily proved using Lagrange’s
Theorem (2.1.2).

Theorem 2.1.3 (Fermat’s little theorem). For any prime p and any integer a: ap ≡ a
mod p.

When a is non-zero mod p we can also write this as ap−1 ≡ 1 mod p.

Extended Euclidean Algorithm We end this section with a reminder of integer division
from school as well as it’s extended version. We know that for any integers a, b there exist
unique r, q such that a = qb+r where 0 ≤ r < |b|. We say that b is the divisor, q is the quotient
and r is the remainder.

The standard Euclidean Algorithm calculates (a, b) as follows: We divide a := r0 by b := r1
and obtain remainder r2. We then divide b by r2 to obtain r3. We proceed by dividing ri by
ri+1 to derive ri+2. We stop when we one of the ri values is 0, and output ri−1, which is the
gcd of a, b.

The Extended Euclidean Algorithm not only calculates (a, b) but also a pair of x, y values
such that ax + by = gcd(a, b). Initially, it operates in the same way as the standard version,
with the addition of keeping the quotient values qi from every division performed. When the
original algorithm finishes, we know the gcd r∗i as well as it’s derivation in terms of ri∗−1 and
ri∗−2. We also know how to express ri∗−1 in terms of ri∗−2, ri∗−3. By iterating over i we are
able to express r∗i as a function of (a, b).

Let us divide 39 by 7:

39 = 5 · 7 + 4

7 = 1 · 4 + 3 We divide the previous divisor (r1 = 7) by the previous remainder (r2 = 4).

4 = 1 · 3 + 1 We divide the previous divisor (4) by the previous remainder (3).

3 = 3 · 1 + 0 Remainder r5 is 0, we stop; the gcd is the previous remainder (1).

We now move to the extended part

1 = 4− 1 · 3 Start with the last non-zero remainder r4 = 1.

1 = 4− 1 · (7− 1 · 4) Replace r3 = 3.

1 = 2 · 4− 7 Rewrite for clarity.

1 = 2 · (39− 5 · 7)− 7 Replace r2 = 3.

1 = 2 · 39− 11 · 7 Rewrite.

Corollary 2.1.3.1. We can directly calculate inverses in Z∗p. Compared to Cor. 2.1.2.2, the
Extended Euclidean might seem more involved, but is actually much more efficient, as the group
order tends to be large.

The group Z∗n for n = pq

In the previous section, we created Z∗p from Zp by simply excluding 0 since it has no multiplicative
inverse. When working modulo n where n is composite, it is simple to see that the only elements
with inverses are those co-prime to n.

Theorem 2.1.4. A number a is invertible modulo n iff (a, n) = 1
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Proof. The first direction is straightforward: if (a,n)=1, we can use the Extended Euclidean to
calculate the inverse.

For the second direction, assume ab ≡ 1 mod n i.e. ab − 1 = kn for some k. This implies
1 = ab− kn. The gcd of a, n divides a and also ab. It also divides k and also kn. Thus it must
divide the difference ab− kn, which implies the gcd is 1, so a, n are co-prime.

Theorem 2.1.5. The invertible elements of Zn under multiplication form an Abelian group.

Proof. The existence of inverses is true by assumption. We check that 1 is invertible and that
it is also the neutral element. Associativity and commutability hold by inspection. Closure
holds by observing that (ab)−1 = a−1b−1 thus, the product of two invertible elements is also
invertible.

Note. Z∗n in not cyclic in the general case. In the special case where n = pq for different
non-trivial primes p, q, it is explicitly not cyclic.

For convenience, we will state a very useful result that can be proved either directly, or using
the Chinese Remainder Theorem (2.1.6), which we will be visiting later.

Corollary 2.1.5.1. The number of invertible elements in Z∗n for n = p · q with p, q different
primes is φ(n) = (p− 1) · (q − 1).

Rings and Fields

Definition 2.1.14. A (commutative) ring R is a set together with two binary operations +
and ∗ such that

• (R,+) is an Abelian group;

• The operation ∗ is associative: (r ∗ s) ∗ t = r ∗ (s ∗ t) for all r, s, t ∈ R;

• The distributive law holds in R: r ∗ (s+ t) = r ∗ s+ r ∗ t and (r + s) ∗ t = r ∗ t+ s ∗ t for
all r, s, t ∈ R;

• The operation ∗ commutes: r ∗ s = s ∗ r for all r, s ∈ R; and

• R contains an identity if there is an element 1 ∈ R such that 1 ∗ r = r ∗ 1 = r for all r ∈ R.

Simply put, a commutative ring is an Abelian group without inverses. Not all rings contain 1,
so the last condition is not absolute.

Example. Z is a ring under the usual addition and multiplication.

Example. Zn is a ring under addition and multiplication modulo n.

Definition 2.1.15. A field F is a set together with two binary operations + and ∗ such that

• (F,+) is an Abelian group with identity 0;

• (F − {0}, ∗) is an Abelian group with identity 1 and the distributive law holds.

Example. Q,R, and C are all fields under the usual addition and multiplication.

Example. For any prime p, Zp is a field under addition and multiplication modulo p.

Definition 2.1.16. Let p be a prime. Then Zp is a finite field , denoted Fp.
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Chinese Remainder Theorem

Theorem 2.1.6 (Chinese Remainder Theorem). Let m1, . . . ,mk be pairwise relatively prime
positive integers and let c1, . . . , ck be arbitrary integers. Then there exists an integer x such that

x ≡ ci mod mi

for all i = 1, . . . , k. Moreover, any integer x′ is also a solution to these congruences if and only
if x ≡ x′ mod M where M =

∏
mi for i = 1, . . . , k.

Proof. Let M =
∏
mi for i = 1, . . . , k. Define m′i = M/mi. All the mis are pairwise relatively

prime, so gcd(mi,m
′
i) = 1 for all i. Let ui = (m′i)

−1 mod mi and wi = m′iui. By construction
then, wi ≡ 1 mod mi and wi ≡ 0 mod mj when i 6= j. This gives us wi ≡ δij mod mj where

δij =

{
1, if i = j

0, if i 6= j.

Letting x =
∑
wici for i = 1, . . . , k, we see

x ≡
k∑
j=1

δijci ≡ cj mod mj

as desired.

Remark. The Chinese Remainder Theorem implies the group isomorphism

Z∗n ∼= Z∗
p
e1
1
× . . .× Z∗pemm ,

given by a mod n 7→ (a mod pe11 , . . . , a mod pemm ), where n = pe11 · · · pemm for integers ei and
distinct primes pi.

Example. Historically, the Chinese used this theorem to count soldiers. After a battle, the
soldiers would line up in rows of (for example) three, then in rows of five, and then in rows of
seven. By counting the remaining soldiers after each formation, the commanders could quickly
determine the total number of men and therefore determine their losses.

Say there are fewer than 100 soldiers. After lining up 3 soldiers in each row, 1 soldier remains.
After standing 5 in a row, 2 soldiers remain, and after standing 7 in a row, 6 remain. We want
to calculate the exact number of soldiers.

Let x represent the total. Then

x ≡ 1 mod 3

x ≡ 2 mod 5

x ≡ 6 mod 7.

We compute M = 3 · 5 · 7 = 105, and m′1 = 35,m′2 = 21,m′3 = 15. Computing inverses now, we
have

u1 = 35−1 ≡ 2 mod 3

u2 = 21−1 ≡ 1 mod 5

u3 = 15−1 ≡ 1 mod 7

Then w1 = 70, w2 = 21, w3 = 15, making x = w1c1 + w2c2 + w3c3 = 70(1) + 21(2) + 15(6) ≡
97 mod 105. Thus there are 97 soldiers.
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2.2 Discrete Probability

Definition 2.2.1. A discrete probability distribution D over a set [D] is specified as

• ProbD[u] ∈ [0, 1] for all u ∈ [D]

•
∑
u∈D ProbD[u] = 1.

The set [D] is called the support of D.

Example (Succeeding by Repetition). Consider an experiment where the probability of
success is p. Suppose the experiment is repeated n times; we want to bound the probability
that all n trials fail. Since each trial is independent of the next, the probability of n failures is
(1 − p)n. Recall that 1 − x ≤ e−x for all x. By letting x = p and raising both sides to the nth
power, we obtain the upper bound (1− p)n ≤ e−pn. Then

Prob[At least 1 success] = 1− Prob[All fail]

≥ 1− e−pn.

If p is fixed, the probability that all trials fail drops exponentially according to the number of
repetitions n.

Example (Balls and Boxes). Consider an experiment with n boxes and k balls, each of a
different color. Each ball is thrown into a box at random. We define a collision to be the
event that 2 different colored balls land in the same box. We want to calculate the probability
of a collision. In a situation like this, it is often easier to calculate the probability of the
complementary event:

ProbD[No collision] =
n(n− 1) · · · (n− k + 1)

nk
=

k−1∏
j=0

(
n− j
n

)
.

Using again the fact that 1− x ≤ e−x for all x, we have

k−1∏
j=0

(
n− j
n

)
=

k−1∏
j=1

(
1− j

n

)
≤
k−1∏
j=1

e−j/n = e−k(k−1)/2n.

Since Prob[Collision] = 1− Prob[No collision],

ProbD[Collision] ≥ 1− e−k(k−1)/2n.

Example (The Birthday Paradox). The Birthday Paradox is a classic problem utilizing the
previous scheme. We want to know how many people must be in a room for there to be at
least a 50% chance that two people have the same birthday (a collision). Let n = 365 and
assume that people’s birthdays are uniformly distributed over the days of the year. If we want
ProbD[Collision] ≥ 1/2, then

1− e−k(k−1)/2n ≥ 1

2

e−k(k−1)/2n ≤ 1

2

ek(k−1)/2n ≥ 2

k(k − 1)

2n
≥ ln 2

k2

2n
≥ ln 2

k ≥
√

2n ln 2

So if there are more than 23 people in a room, there is over a 50% chance that two people share
the same birthday. This seems a bit counterintuitive; hence the name “paradox”.
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Example (Binomial Distribution). A binomial trial is an experiment with only two possi-
ble outcomes: success and failure. Let [D] = {0, 1, . . . , n} and the probability of one success be p,
then the binomial distribution is the probability of u successes in a sequence of n independent
trials:

ProbD[u] =

(
n

u

)
pu(1− p)n−u.

Definition 2.2.2. A subset A ⊆ [D] denotes an event . The probability of A is

ProbD[A] =
∑
u∈A

ProbD[u].

It is also possible to prove various statements about set theoretical operations defined between
events, such as unions and intersections. For example, if A,B ⊆ [D], we have

ProbD[A ∪B] = ProbD[A] + ProbD[B]− ProbD[A ∩B].

This is called the inclusion-exclusion principal .

2.3 Conditional Probability

Definition 2.3.1. Let A and B be two events. The probability of A occurring, given that B
has already occurred is called a conditional probability . This is given by

ProbD[A | B] =
ProbD[A ∩B]

ProbD[B]
.

The following theorem is useful for computing conditional probabilities.

Theorem 2.3.1 (Bayes). For two events A and B,

ProbD[B | A] =
ProbD[A | B] · ProbD[B]

ProbD[A]
.

Moreover, if D1, . . . ,Dn is a partition of disjoint events of [D] such that [D] =
⋃

Di for 1 ≤
i ≤ n, then for any events A and B,

ProbD[B | A] =
ProbD[A | B] · ProbD[B]∑n

i=1 ProbD[A | Di] · ProbD[Di]
.

Let B denote the complement of an event: B = [D] \B. Bayes’ theorem suggests

ProbD[B | A] =
ProbD[A | B] · ProbD[B]

ProbD[A | B] · ProbD[B] + ProbD[A | B] · ProbD[B]
.

Example. Here we see an application of Bayes’ Theorem. Let D be a probability distribution
over a given population and let the event S correspond to the subset of the population sick with
a certain disease. Suppose there is a medical test that checks for the disease and define T to be
the event that an individual selected from the population tests positive.

The prevalence of the disease is ProbD[S] = 1%, the chances of a successful test are
ProbD[T | S] = 99%, and the probability of an inaccurate test is ProbD[T | S] = 5%. We want
to find the probability that a certain individual is sick, given that the test result is positive. A
common mistake is to claim that the probability is 99%- the success rate of the test. This is
false because it fails to take into account that we already know the person tested positive. Using
Bayes’ theorem, we can account for this information and compute

ProbD[S | T] =
ProbD[T | S] · ProbD[S]

ProbD[T | S] · ProbD[S] + ProbD[T | S] · ProbD[S]

=
(0.99)(0.01)

(0.99)(0.01) + (0.05)(1− 0.01)

=
1

6
.

This might seem unreasonable, but because the disease is so uncommon, a positive test is more
likely to occur from an inaccurate test than from the actual sickness.
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2.4 Random Variables

Definition 2.4.1. For a probability distribution D, we define a random variable X to be a
function
X : [D] −→ R. For any x ∈ R, we use the notation

Prob[X = x] =
∑

X(u)=x

ProbD[u].

We say that a random variable X is distributed according to D if X : [D] −→ [D] is the identity
function. We denote this by

Prob
X←D

[X = x] =
∑

X(u)=x

ProbD[u].

Definition 2.4.2. For any probability distribution D with random variable X, its expectation
is

E[X] =
∑
x∈R

xProb[X = x].

Definition 2.4.3. The variance of a discrete random variable X measures the spread, or
variability of a distribution. It is defined by

Var[X] = E[X2]− E[X]2.

2.5 Tails of Probability Distributions

When analyzing random procedures, we often want to estimate the bounds on the tails of a
probability distribution. The term “tails” refers to the extremities of the graphical representation
of a probability distribution, where the distribution deviates from the mean. The following
theorems will be helpful.

Theorem 2.5.1 (Markov’s Inequality). Let X be a random variable that takes only nonneg-
ative real values. Then for any t > 0,

Prob[X ≥ t] ≤ E[X]

t
.

Theorem 2.5.2 (Chebyshev’s Inequality). Let X be a random variable. For any t > 0 we
have

Prob[|X − E(X)| ≥ t] ≤ Var[X]

t2
.

Theorem 2.5.3 (Chernoff’s Bound). Let X1, . . . , Xn be independent random variables taking
values in {0, 1} with Prob[Xi = 1] = pi. Then

Prob

[
n∑
i=1

Xi ≤ (1− δ)µ

]
≤ e−µδ

2/2 and Prob

[
n∑
i=1

Xi ≥ (1 + δ)µ

]
≤
(

eδ

(1 + δ)1+δ

)µ
where µ =

∑
pi and δ ∈ (0, 1].

Here µ is the expectation and (1− δ)µ and (1 + δ)µ are the tails.

Example (Guessing with a Majority). Suppose there is an oracle that answers questions
with Yes or No, and answers questions correctly with probability 1/2 +α. Say we ask the oracle
n questions and let Xi be a random variable according to

Xi =

{
1, oracle answers the i th query correctly

0, otherwise.
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If we define a failure as receiving fewer correct answers than incorrect answers, the probability
of failing is

Prob[Failure] = Prob
[
# of correct answers ≤ n

2

]
= Prob

[
n∑
i=1

Xi ≤
n

2

]
.

Here we apply Chernoff’s bound by setting n/2 = (1− δ)µ. Then

Prob

[
n∑
i=1

Xi ≤ (1− δ)µ

]
≤ e−µδ

2/2. (1)

Noting that µ = (1/2 + α)n, we can solve for δ.

n

2
= (1− δ)µ

n

2
= (1− δ)

(
1

2
+ α

)
n

δ =
α

1/2 + α

To estimate the probability of a failure, we substitute this value of δ into (1).

Prob[Failure] ≤ e−α
2n/(1+2α).

This implies that if the oracle has bias α, we can typically expose the bias after a sufficient number
of repetitions n. Because of this, the probability of failing drops exponentially depending on the
degree of the bias and the number of trials. If we want the probability of failing to fall below
some ε, we can find a suitable lower bound on n.

e−α
2n/(1+2α) < ε

−α2n

(1 + 2α)
< ln(ε)

n > α−2(1 + 2α) ln

(
1

ε

)
So by taking n large enough, we can guarantee that the probability of failing is sufficiently low.

2.6 Statistical Distance

Definition 2.6.1. Let X and Y be random variables distributed according to D1 and D2 re-
spectively and let V = X([D1]) ∪ Y ([D2]). We define the statistical distance ∆ by

∆[X,Y ] =
1

2

∑
u∈V

∣∣∣∣ Prob
X←D1

[X = u]− Prob
Y←D2

[Y = u]

∣∣∣∣ .
Figure 1 illustrates the statistical distance between two random variables X and Y . The

dotted curve represents the distribution of X over D1 and the black curve corresponds to Y over
D2. By definition, the sum of the probabilities over the support set is 1, so the area below each
curve is 1. Half the sum of the shaded areas represents the statistical distance between X and
Y . Because the striped area equals the gray area, dividing the total shaded area by 2 effectively
establishes one of the two marked areas as the statistical distance.
Exercise: Show that for any two support sets [D1] and [D2], the striped area equals the gray
area, so the statistical distance is equal to one of the two areas.

Definition 2.6.2. Let ε > 0, then two random variables X and Y are said to be ε-close if
∆[X,Y ] ≤ ε.
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[D ]

[D ]
1

2

Figure 1: Two probability distributions over different support sets [D1] and [D2]. The shaded
regions distinguish the statistical distance between the random variables.

Example. Let D1 be the uniform distribution over [0, A) where 2n ≤ A < 2n+1 and let D2 be
the uniform distribution over [0, 2n). We want to calculate the statistical distance of D1 and
D2.

Since D1 is uniform over [0, A), we have ProbD1
[u] = 1/A for all u ∈ [0, A). Similarly, we

can extend D2 over the sample space [0, A) by defining

ProbD2 [u] =

{
1/2n, u ∈ [0, 2n)

0, u ∈ [2n, A).

Suppose X and Y are random variables distributed according to D1 and D2 respectively
where [D1] = [D2] = [0, A). Then

∆[X,Y ] =
1

2

∑
u∈[0,A)

∣∣∣∣ Prob
X←D1

[X = u]− Prob
X←D2

[X = u]

∣∣∣∣
=

1

2

 ∑
u∈[0,2n)

∣∣∣∣ 1

A
− 1

2n

∣∣∣∣+
∑

u∈[2n,A)

∣∣∣∣ 1

A
− 0

∣∣∣∣


=
1

2

 ∑
u∈[0,2n)

(
1

2n
− 1

A

)
+

∑
u∈[2n,A)

1

A


=

1

2

((
1

2n
− 1

A

)
2n +

1

A
(A− 2n)

)
=
A− 2n

A
.

Letting d = A − 2n, we have ∆[X,Y ] = d/(d + 2n). When A is relatively close to 2n, ∆[X,Y ]
approximates 0. For example, if d = 2n/2 so that A = 2n/2 + 2n, the statistical distance drops
exponentially:

d

d+ 2n
=

2n/2

2n/2 + 2n
=

1

1 + 2n/2
≈ 2−n/2.

Definition 2.6.3. A function f is negligible if for all c ∈ R there exists n0 ∈ N such that
f(n) ≤ 1/nc for all n ≥ n0.

Definition 2.6.4. A (probability) ensemble is a collection of distributions D = {Dn}n∈N.
We now take the collection X over an ensemble D to mean a collection of random variables

over Dn ∈ D. As an abuse of notation however, we will still refer to the collection X as a random
variable.
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Definition 2.6.5. Let X and Y be random variables over ensembles D and D′. We say D and
D′ are statistically indistinguishable if ∆[X,Y ] is a negligible function in n.

It needs to be stressed that ∆[X,Y ]→ 0 for two ensembles does not imply that the ensembles
are indistinguishable. Statistical indistinguishability implies that the statistical distance, when
viewed as a function of n, should be smaller than any polynomial function of n for sufficiently
large values of n.

2.7 Statistical Tests

Definition 2.7.1. A statistical test A for an ensemble D = {Dn}n∈N is an algorithm that
takes input elements from Dn and outputs values in {0, 1} for each n ∈ N .

Theorem 2.7.1. Consider the statistical test A as a function of n and let X and Y be random
variables following the ensembles D1 and D2 respectively. Define

∆A[X,Y ] =

∣∣∣∣ Prob
X←D1

[A(X) = 1]− Prob
Y←D2

[A(Y ) = 1]

∣∣∣∣
to be the statistical distance with respect to the test A. Then for all A, ∆[X,Y ] ≥ ∆A[X,Y ]
and there exists some A∗ such that ∆[X,Y ] = ∆A∗ [X,Y ].

The first part of the theorem is argued as follows. For any A,

∆A[X,Y ] =

∣∣∣∣∣ ∑
a∈An

ProbD1
[a]− ProbD2

[a]

∣∣∣∣∣ ≤ ∑
a∈An

|ProbD1
[a]− ProbD2

[a]| =df N1

where An = {a ∈ Dn : A(a) = 1}.
Now consider the statistical test A that operates exactly as A but flips the answer. It is

immediate that ∆A[X,Y ] = ∆A[X,Y ] based on the definition of ∆A[·, ·]. Based on a similar
reasoning as above we have that

∆A[X,Y ] = ∆A[X,Y ] ≤
∑
a∈An

|ProbD1 [a]− ProbD2 [a]| =df N2

where An is the complement of An in Dn.
Now we observe that

N1 +N2 =
∑
a∈An

|ProbD1
[a]− ProbD2

[a]|+
∑
a∈An

|ProbD1
[a]− ProbD2

[a]|

=
∑
a∈Dn

|ProbD1
[a]− ProbD2

[a]|

= 2∆[X,Y ].

Due to ∆A[X,Y ] = ∆A[X,Y ] and the fact that ∆A[X,Y ]+∆A[X,Y ] ≤ 2 ·∆[X,Y ] the result
follows.

Regarding the second part of the theorem, we define a distinguisher A∗ as follows:

A∗(a) =

{
1, ProbD1 [a] ≥ ProbD2 [a]

0, otherwise,

it follows easily that ∆[X,Y ] = ∆A∗ [X,Y ]. Indeed, for A∗n = {a ∈ Dn : A∗(a) = 1} ⊆ Dn,

∆A∗ [X,Y ] =

∣∣∣∣∣∣
∑
a∈A∗n

ProbD1
[a]−

∑
a∈A∗n

ProbD2
[a]

∣∣∣∣∣∣ =
∑
a∈A∗n

(ProbD1
[a]− ProbD2

[a])

from which the result follows immediately.
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To visualize how ∆[X,Y ] = ∆A∗ [X,Y ] for this distinguisher, we return to Figure 1. The
striped area denotes where ProbD1

[u] ≥ ProbD2
[u], which we have already seen is exactly the

statistical distance.

Example. Consider the two probability distributions D1 and D2 where

b1b0 D1 D2

0 0 0.25− ε 0.25
0 1 0.25 0.25
1 0 0.25 + ε 0.25
1 1 0.25 0.25

Let X and Y be random variables following D1 and D2. The statistical distance is

∆[X,Y ] =
1

2
(|(0.25− ε)− 0.25|+ |0.25− 0.25|+ |(0.25 + ε)− 0.25|+ |0.25− 0.25|) = ε.

Take a set of statistical tests A1, . . . ,A5 that distinguish the previous probability distri-
butions. Suppose we are given two bits b0 and b1. Test A1 outputs b1. By the previ-
ous information, it is clear that ∆A1

[X,Y ] = |(0.25 + ε) + 0.25− (0.25 + 0.25)| = ε. Test
A2 outputs b0, so then ∆A2 [X,Y ] = |(0.25 + 0.25)− (0.25 + 0.25)| = 0. If Test A3 out-
puts b0 + b1 mod 2, also denoted by the exclusive-or operator b0 ⊕ b1, its statistical distance
is given by ∆A3

[X,Y ] = |0.25 + (0.25 + ε)− (0.25 + 0.25)| = ε. Test A4 outputs b0 ∨ b1, so
∆A4

[X,Y ] = |0.25 + (0.25 + ε) + 0.25− (0.25 + 0.25 + 0.25)| = ε. And finally, if Test A5 out-
puts b0 ∧ b1, its statistical distance is ∆A5

[X,Y ] = |0.25− 0.25| = 0.
Based on this information, we can determine that A1,A3, and A4 are “good” tests with re-

spect to D1 and D2 because their respective statistical distances are precisely ∆[X,Y ]. Likewise,
tests A2 and A5 are considered “bad” because they both have statistical distance 0.

2.8 Probabilistic Algorithms

Algorithms may use the additional instruction x
r←− {0, 1} for a random variable X uniform over

D = {0, 1}. Such algorithms are called probabilistic algorithms and we say that they “flip
coins”.

For any probabilistic algorithm, the set of possible outputs form the support set of a proba-
bility distribution. In particular, if a ∈ {0, 1} is a possible output for a probabilistic algorithm
A with input x, we define

Prob[A(x) = a] =
# {b ∈ {0, 1}n : A flips b and outputs a}

2n
,

where n denotes the number of coin flips performed by A for a given x. Depending on the
specifications of the algorithm, determining n can be cumbersome. We may assume without loss
of generality however, that a probabilistic algorithm A makes the same number coin flips for
all inputs of the same length. This restriction does not affect the computational power of our
underlying probabilistic algorithm model.

Example. Consider the following algorithm. Call it A1.

1: Input 1n

2: select x0, · · · , xn−1
r←− {0, 1}

3: if

n−1∑
i=0

2ixi ≥ 2n−1

4: then output 1
5: else output 0

Since 1 is a possible output,

Prob[A1(1n) = 1] =
# {b ∈ {0, 1}n : A flips b and outputs 1}

2n
=

2n−1

2n
=

1

2
.
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Example. Call the following algorithm A2.

1: Input 1n

2: repeat n times

3: x
r←− {0, 1}

4: if x = 1, output 1 and halt

5: output Fail

Then we have the following probabilities

Prob[A2(1n) = Fail] =
1

2n

Prob[A2(1n) = 1] = 1− 1

2n
.

Let A be a n-bit number. We call the left-most bit in the binary expansion of A the most
significant bit . To avoid trivialities, we require that the most significant bit of A be 1.

Below are three probabilistic algorithms that attempt to sample the uniform over [0, A).
To measure the quality of a sampler, one must compute the statistical distance between the
sampler’s output distribution and the uniform distribution over the set {0, 1, 2, . . . , A− 1}.

Exercise: Consider the following set of samplers. Investigate the output probability distributions
of each to determine which has the most uniform distribution.
Sampler 1:

1: n := dlog2Ae
2: choose: x0, x1, . . . , xn−1

r←− {0, 1}
3: y :=

∑n−1
i=0 2ixi

4: output y mod A

Sampler 2:

1: choose: x0, x1, . . . , xA−1
r←− {0, 1}

2: y :=
∑A−1
i=0 xi

3: output y

Sampler 3:

1: n := dlog2Ae
2: repeat

3: choose: x0, x1, . . . , xn−1
r←− {0, 1}

4: y :=
∑n−1
i=0 2ixi

5: if y < A output y and halt

6: else repeat

3 Constructing Commitment Schemes

We now turn our attention to the construction of the first cryptographic primitive that we
mentioned in the context of coin flipping.

3.1 Syntax of a commitment scheme

Let λ be the security parameter; we can think of this value as the key length. Abstractly the
commitment scheme can be divided in two stages: The commit stage and the open stage. Alice is
the committer (or sender) and Bob is the receiver (or verifier). The commitment scheme may or
may not be parameterized by a public parameter produced by an algorithm Gen. We will focus
on “non-interactive” commitment schemes (i.e., schemes that require no interaction beyond a
single message). The algorithms involved in a commitment scheme are given below.
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Parameter generation . A trusted execution of Param(1λ) is ensured and the output b is
provided to both parties. Note that in case Param is deterministic a trusted execution of b
can be trivially ensured by both parties by essentially repeating the computation whenever
b is needed.

Commit Stage 1. Alice selects her message M and commits to it by calculating (r, c) ←
Commit(b,M)

2. Alice sends c to Bob

Open Stage 4. Alice sends the “decommitment” information r and the message M to Bob

5. Bob runs the verification algorithm to ensure the opening of Alice is appropriate.

Verify(b, c, r,M) =

{
1 accept
0 reject

3.2 Security Properties

We next define the two security properties of the commitment scheme. We consider first the
case that the parameters are generated by a trusted party.

Correctness: For every messageM we require that: If b← Param(1λ) and (r, c)← Commit(b,M),
then Verify(b, c, r,M) = 1, where b, c, r are chosen randomly.

Binding: Intuitively, this property requires that Alice should not be in position to change her
message after sending her commitment. More formally let A be an algorithm that can
commit two different messages M1, M2 to the same commitment c, that is

Algorithm 1 bindattackA(1λ)

1: Let b← Param(1λ)
2: (c, r1,M1, r2,M2)← A(b)
3: if Verify(b, c, r1,M1) = 1 and Verify(b, c, r2,M2) = 1 and M1 6= M2 then
4: return 1
5: else
6: return 0
7: end if

We require that for every PPT A the following holds:

Prob[bindattackA(1λ) = 1] = negl(1λ)

Strengthening of the above attack allows the adversary to specify the commitment param-
eter b. In this case we modify lines 1-2 above so that (b, c, r1,M1, r2,M2)← A(1λ). In this
case we will say that we have a non-interactive commitment scheme that satisfies hiding
with adversarial parameters.

Hiding: The secrecy of Alice’s message is preserved, meaning that Bob cannot extract any
information about Alice’s message
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Algorithm 2 hidingattackB(1λ)

1: b← Param(1λ)
2: Let (aux,M0,M1)← B1(1λ)

3: d
R← {0, 1}

4: (r, c)← Commit(b,Md)
5: d∗ ← B2(c, aux)
6: if d∗ = d and M0 6= M1 then
7: return 1
8: else
9: return 0

10: end if

We require that for every pair of PPT algorithms B = (B1, B2)

Prob[hidingattackB(1λ) = 1] ≤ 1

2
+ negl(1λ)

As before strengthening of the above attack allows the adversary to specify the commitment
parameter b. In this case we modify lines 1-2 above so that (b, aux,M0,M1)← B1(1λ). In this
case we will say that we have a non-interactive commitment scheme that satisfies binding with
adversarial parameters.

3.3 The Discrete Logarithm Problem

Now that we have specified what a commitment scheme is, it is time to see a way to implement
it. We will be describing Pedersen’s protocol, which relies on the discrete logarithm assumption
for security. Thus, before presenting the protocol’s description, we will first define the Discrete
Logarithm Problem.

As a reminder, the logarithm is the inverse of the exponentiation function, i.e if y = gx, we
say that x is the logarithm of y with respect to g, (or under base g). We may also write this as
x = logg y.

3.3.1 Group Generators

Definition 3.3.1. A group generator GGen is a probabilistic algorithm that produces a de-
scription of a finite group G when given a length λ. At a minimum, the description contains a
group element, the group operation, and a group membership test.

In practice, we will assume GGen will provide us with a generating element g, as well as its
order. It is also common for the group G that is provided by GGen to be a supergroup of 〈g〉.
This will be made clear in the context.

Example. Take Z∗p to be our group for some prime p of length λ. GGen returns an element g
of order q, where q is some function of λ and p. The group operation is multiplication modulo
p, and if an integer is between 1 and p − 1, it passes the group membership test. (Note that g
only produces a subgroup of Zp, and that the membership test is with respect to Z∗p).

To implement such a generator, GGen on input 1λ can calculate a random number p of the
form 4k + 3 that has λ bits, and then check if p is a prime number. If not, it chooses another
p otherwise it checks whether (p− 1)/2 is prime, if not it chooses another p. When the right p
is found, it chooses a number a ∈ {2, . . . , p − 2} and random and computes a(p−1)/2 mod p. If
this value is 1 then it chooses another a. Otherwise it sets g = a2 mod p. The output of the
algorithm GGen are the values (p, g, q = (p− 1)/2).

3.3.2 The Discrete Logarithm problem with respect to GGen

Suppose now we have a group generator GGen, that produces the description of a finite group G
and of a cyclic subgroup of order q within G. We consider only the case that q is a prime number.
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We assume that the order of G may be known via the group description, but we will not be
using it directly. Based on this we define the following algorithm that samples discrete-logarithm
parameters.

Algorithm 3 DLPGGen(1λ)

1: 〈G, q, g〉 ← GGen(1λ)

2: t
R← Zq

3: h← gt

4: return 〈G, q, g, h, t〉

For an algorithm A, we say that it solves the Discrete Log Problem, with respect to GGen, if

Prob[〈G, q, g, h, t〉 ← DLPGGen(1λ) : A(G, q, g, h) = t]

is not negligible. Based on the above we can now define the DLog assumption, according to
which:

∀ PPTA : Prob[〈G, q, g, h, t〉 ← DLPGGen(1λ) : A(G, q, g, h) = t] = negl(λ)

3.4 Pedersen Commitments

We are now ready to describe Pedersen’s protocol, and prove it secure under the Discrete Loga-
rithm Assumption w.r.t a group generator GGen.

1. Param will call GGen(1λ) which outputs (G, q, g) such that g ∈ G, q = order(g) (that

is gq = 1), q is prime |q| = λ bits. Also, let h = gt, where t
R← Zq. Param outputs

b = 〈G, q, g, h〉.

2. To commit to a message M using parameters b, Alice checks that q is prime, that g, h ∈ G
and that gq = hq = 1. She selects r

R← Zq and her message M ∈ Zq. She commits to her
message:

c = grhM

and sends her commitment c, while keeping M, r. If any of the checks fails she outputs
“Bad parameters.”

3. At the Opening/Verification stage, Alice sends the revelation r and her message M and
Bob verifies using the condition:

if c = grhM then 1 else 0

3.4.1 Proof of security

The aforementioned protocol is secure, i.e. the Binding and Hiding properties hold.

Binding Suppose that the Binding property does not hold. Then there exists an algorithm
A, that is successful in the binding attack described earlier. We will use this adversary, to
construct an algorithm that breaks the discrete-logarithm assumption and therefore end up in
a contradiction.

The fact that A can perform a successful binding attack, means that it can find two pairs
(r1,m1) and (r2,m2) such that

c = gr1hm1

c = gr2hm2

}
⇒ gr1hm1 = gr2hm2

which means that
gr1−r2 = hm2−m1
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Using the extended Euclidean Algorithm it is easy to find k ∈ Zm such that k(m2 −m1) = 1,
which means that

g(r1−r2)k = h

and
(r1 − r2)k = logg h

But this contradicts our initial DLog assumption and therefore we can conclude, that such
an adversary does not exist and our protocol preserves the binding property.

Hiding We will now show that the hiding property holds even with adversarial parameters.
For this let us define a function

f : Zq × Zq → 〈g〉 ≡ Zq
such that

f(r,M) = c

The above defined function f is surjective and bijective3 for a fixed4 M ∈ Zq.
It suffices to show that for r1, r2

R← Zq and two messages M1,M2 the following holds:

∆[f(r1,M1), f(r2,M2)] = 0

or equivalently that
∆[f(r,M), U ] = 0,

where U is the uniform distribution on Zq, which would evidently mean that c does not provide
any information about M .

Let z ∈ 〈g〉, i.e. z = gl, where l ∈ Zq. Then we have that:

Prob[g(r,M) = z] = Prob[grhM = gl]

= Prob[gr = glh−M

= Prob[gr = gl−M ]

= Prob[r = l −M mod q]

=
1

q

Which proves that
∆[f(r,M), U ] = 0,

The remaining of the proof now goes in two steps: first we modify line 4 of the hidingattackB(1λ)

so that c is selected at random from 〈g〉. For this modified attack game hidingattack
B

(1λ) it
will hold that:

Prob[hidingattackB(1λ) = 1] = Prob[hidingattack
B

(1λ) = 1]

Furthermore, if Wb is the event d∗ = d ∧M0 6= M1, in the attack game hidingattack
B

(1λ)
we have

Prob[hidingattack
B

(1λ) = 1] = Prob[W0 | d = 0]Prob[d = 0] + Prob[W1 | d = 1]Prob[d = 1]

We observe that the random variable d is independent from W0 and W1 and thus

Prob[hidingattack
B

(1λ) = 1] = (Prob[W0] + Prob[W1])
1

2
=

1

2
This completes the proof.

3Onto: Observe that f(r,M) = grhM = gr(gt)M = gr+tM . So for a ∈ Zq we have that there exists an r,
such that f(r,M) = a
1-1: Suppose there exist r1 and r2 such that f(r1,M) = f(r2,M) Then we have that f(r1,M) = f(r2,M) ⇒
gr1+T = gr2+T for a T = tM
⇒ r1 + T ≡ r2 + T mod m⇒ r1 ≡ r2 mod q
Observe that we have used all the conditions, that Alice checks when she receives the parameters from Bob.

4Observe that if we allow M to vary, bijectivity breaks (take for example (5, 0) and (2, 1) in Z∗7 with g = 3)
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3.4.2 Notes and pitfalls

We note that in order to achieve security against adversarial parameters, the checks performed
by Alice are essential. As a concrete example, we will use the very natural example of Z∗p as the
basis for our group.

As p = 2k+1 for most primes p, G will be a group of order 2k and thus our order q subgroup
is non-trivial (i.e. not the same as G itself).

Suppose the adversary chooses parameters such that order(h) = 2q. For example, h = ζgt

and ζ such that5 order(ζ) = 2 in Z∗p), also note that ζq = ζ as q is odd. Then, after receiving
Alice’s commitment c he just needs to do the following in order to compute one bit of M :

cq = (gr)q(hM )q = (hq)M = (ζq)M (gq)
tM

= ζM =

{
1, M even
ζ, M odd

This would constitute a hiding attack against a protocol that does not check that the order of
h is indeed q. The above shows that the test hq = 1 is essential for the hiding property with
adversarial parameters.

What about the other tests that Alice performs? Can you find attacks if they are omitted?
We can also show that binding breaks down if Alice is the one generating the parameters.

As a first indication of that, we point out that our proof is no longer meaningful. Recall that we
show that an adversary who can break the binding property can be used to compute a discrete
logarithm by having the experiment control the commitment parameters b. But, if Alice is the
one generating the parameters, this no longer works. Essentially, we are letting Alice choose a
discrete log that she already knows.

More concretely, if we know that h = gx we may simply choose (r,M) and (r− x,M + 1) as
the two openings of c = grhM . Details are left as an exercise.

3.5 Choosing a Group for the DLP

So far we have been conveniently vague in our choice of a group; In fact, we have carefully chosen
our parameters to ensure that the underlying problems are indeed hard. The next example
demonstrates this by showing that the discrete logarithm problem is solvable in polynomial-time
when we choose an inappropriate group.

Example (Silver–Pohlig–Hellman Algorithm). Consider Z∗p for a large prime p. By a
theorem of Euler, Z∗p has order p−1. For this example, consider the case where p−1 factors into
small primes qi: p− 1 = q1q2 · · · qs. Then there is a subgroup Gi of order qi.

6 Define the group
homomorphism fi : Z∗p −→ Gi by x 7→ xp−1/qi and let gi = gp−1/qi for some fixed generator g of
Z∗p. Note that gi has order qi.

Take some y = gx mod p. Raising both sides to the p − 1/qi power, we have yp−1/qi ≡
(gp−1/qi)x ≡ gx mod qi

i mod p where 1 ≤ i ≤ s. Because qi is a small prime, we can use brute
force to solve the discrete logarithm problem; that is, we can perform an exhaustive search to
find the set of congruences xi ≡ x mod qi. We can then compute x using the Chinese Remainder
Theorem.

To avoid this type of attack, we can select Z∗p such that it contains a large subgroup. For
example, if p = 2q+ 1 and q is prime, there is a subgroup of size q, called the quadratic residues
of Z∗p.

Definition 3.5.1. The quadratic residues of G is the subgroup of all y ∈ G such that there
is an x ∈ G with x2 = y.

When G = Z∗n, we write the quadratic residues as QR(n). In the particular case G = Z∗p for
a prime p, QR(p) = 〈g2〉 for a generator g of G. QR(p) is exactly half the elements of G. This
is the largest proper subgroup of Z∗p.

The mapping x 7→ x
p−1
2 is particularly useful in this context. It is easy to see that the image

of the map is {1,−1}.
5E.g. ζ ≡ −1 mod p
6The existence of such a subgroup is guaranteed by Cauchy’s Theorem.
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We prove the following useful result regarding quadratic residues.

Lemma 3.5.1. Consider some a ∈ Z and p ≡ 3 mod 4. It holds that a
p−1
2 = 1 mod p if and

only if a ∈ QR(p).

Proof. For the forward direction, suppose that a
p−1
2 = 1 mod p. Let y = a

p+1
4 mod p. Then we

have
y2 = a

p+1
2 = a

p−1
2 · a = a mod p

Given that y2 = a mod p we obtain a ∈ QR(p).

For the other direction, if a ∈ QR(p), i.e., we have y2 = a mod p we have that a
p−1
2 = yp−1 =

1 mod p.

Observe that the proof of the lemma provides a way to construct the roots of a quadratic

residue modulo p. Indeed, given a the two roots of a modulo p are calculated as ±a
p+1
4 mod p.

4 Symmetric Cryptosystems

Although we will not discuss symmetric cryptosystems in class, here we provide several interest-
ing examples, many of which are of important historical significance.

In a symmetric cryptosystem, both ends of a communication channel share a common secret
key. This key is necessary for both the encryption and decryption of messages.

Definition 4.0.1. A symmetric cryptosystem is composed of the the following elements:

• A plaintext message space M

• A ciphertext message space C

• A key space K

• An efficient encryption algorithm E : K ×M −→ C

• An efficient decryption algorithm D : K × C −→M

• An efficient key generation algorithm G : N −→ K

In addition to the above, a symmetric cryptosystem must satisfy the correctness property :

• For all m ∈M and k ∈ K, D(k, E(k,m)) = m.

4.1 Classical ciphers

Substitution Ciphers

One of the most basic symmetric cryptosystems is the substitution cipher. In a substitution
cipher, the encryption algorithm replaces each message m ∈M with a corresponding ciphertext
c ∈ C. For a given key, the substitution function is a mapping π : M −→ C and the decryption
algorithm performs the inverse substitution π−1 : C −→M.

Example (Affine Cipher).

• Message Spaces: M, C = ZN

• Key Space: (a, b) ∈ ZN × ZN with gcd(a,N) = 1

• Encryption Algorithm: E((a, b),m) = am+ b mod N
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Substitution ciphers, and in particular affine ciphers have been used for thousands of years.
One famous affine cipher, known as the Caesar cipher or the shift cipher was used by the Roman
emperor Julius Caesar in about 50 BC. In the Caesar cipher, a = 1 and b = 3, so after assigning
each letter of the alphabet to a number, the cipher shifts each letter to the right by 3 (mod 24).
In modern times, such a technique cannot withstand frequency statistical analysis attacks. Due
to the small number of literate people at that time however, the method sufficed.

Substitution ciphers in ZN can be viewed as permutations on the set {0, 1, . . . , N − 1}. Per-
haps the simplest way to encode the English alphabet is to use Z26, where each letter is identified
with a unique integer modulo 26. The key space is 26!. Unfortunately, this type of cipher is very
vulnerable to frequency statistical analysis attacks.

Polyalphabetic Ciphers

In a polyalphabetic cipher, a plaintext element is repeated and substituted into different cipher-
text elements.

Example (Vigenère Cipher).

• Key: “gold”

• Plaintext Message: “proceed”

• Encryption Algorithm: Character-wise addition modulo 26

• Decryption Algorithm: Character-wise subtraction modulo 26

To encode “proceed”,

p r o c e e d
g o l d g o l
v f z f k s o

←→
15 17 14 2 4 4 3
6 14 11 3 6 14 11
21 5 25 5 10 18 14

Polyalphabetic ciphers provide more security against frequency statistical analysis attacks
than the previous monoalphabetic ciphers. The polyalphabetic cipher’s main weakness lies
instead in the repetitive use of the same key.

Vernam Cipher and the One-Time Pad

Gilbert Vernam, an engineer for Bell Labs proposed this cipher in 1918.

• Message Spaces: M, C = {0, 1}n

• Key Space: K = {0, 1}n

• Encryption Algorithm: E(k,m) = k ⊕m

• Decryption Algorithm: D(k, c) = k ⊕ c

This cipher encodes and decodes each element character by character using a previously
determined, randomly generated key. Since the key is never reused or repeated, it became known
as the one-time pad. The encryption and decryption algorithms are identical, but the properties
of the exclusive-or (XOR) operator ⊕ guarantee that the correctness property is satisfied. This
cryptosystem is provably secure in the information-theoretical sense. Its main drawback lies in
the fact that the key must be at least the length of the original message.
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Transposition Ciphers

A transposition cipher rearranges the positions of each character according to a permutation
π. The decryption algorithm recovers the original message by applying the inverse permutation
π−1.

Example (Transposition Cipher).

• Key: π = (2143)

• Plaintext Message: “code”

• Ciphertext Message: “oced”

In this example, the inverse permutation π−1 is the same as the encryption permutation.

4.2 The Data Encryption Standard (DES)

The Data Encryption Standard (DES) is an algorithm that takes messages of a fixed length
and divides them into blocks. The encryption and decryption operations act on these blocks
and return outputs of the same length. The system is deterministic and considered to be a
polyalphabetic substitution cipher.

The plaintext and ciphertext message spaces are 64-bit strings M, C = {0, 1}64 and the key

space is a 56-bit string K = {0, 1}56. To encode a message using DES, first divide the message
into the 32-bit left and right sub-blocks L0 and R0. Take an initial permutation IP to be a fixed
permutation, independent of the encryption key k. Then

1. (L0, R0)← IP (input)

2. Take an S-box function f : {0, 1}48 × {0, 1}32 −→ {0, 1}32 (we will formally define f later
in the section) and 48-bit string keys k1, k2, . . . , k16 derived from the 56-bit key k. Repeat
the following operations 16 times:

• Li = Ri−1

• Ri = Li−1 ⊕ f(ki, Ri−1)

3. Output ← IP−1(R16, L16)

The decryption algorithm follows in a similar fashion, with the key schedule reversed.

Feistel Cipher

Here we show that the iterative operations above satisfy the correctness properties for the DES
cyptosystem. Steps 1-3 are collectively known as a Feistel cipher . Let XL and XR represent
the left and right 32-bit substrings of the input. Mathematically, this cipher is based on a round
function Fk : {0, 1}64 −→ {0, 1}64 given by

Fk(X) = XR ‖ XL ⊕ f(k,XR).

Recall that the concatenation operation ‖ has the lowest precedence in operations.
In order to express DES as a Feistel cipher, we first define a transposition function,

T (X) = XR ‖ XL.

It should be clear from the above structure that the encryption operation can be described by

IP−1 ◦ T ◦ Fk16 ◦ · · · ◦ Fk2 ◦ Fk1 ◦ IP (X),

where ◦ denotes the usual function composition. Similarly, the decryption operation of DES can
be viewed as

IP ◦ Fk1 ◦ Fk2 ◦ · · · ◦ Fk16 ◦ T ◦ IP−1(X).
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Lemma 4.2.1. Let F be the set of all functions F : {0, 1}64 −→ {0, 1}64. It follows that for all
m > 0 and F1, F2, . . . , Fm ∈ F ,

F1 ◦ F2 ◦ · · · ◦ Fm ◦ T ◦ Fm ◦ · · · ◦ F2 ◦ F1(X) = T (X).

Proof. We prove this by inducting on the number of functions m. When m = 1, we have one
function F in F , so

F ◦ T ◦ F (X) = F ◦ T (XR ‖ XL ⊕ f(k,XR))

= F (XL ⊕ f(k,XR) ‖ XR)

= XR ‖ XL ⊕ f(k,XR)⊕ f(k,XR)

= XR ‖ XL

= T (X).

Assume the conclusion holds true for i functions in F : for any F1, F2, . . . , Fi ∈ F , it holds
that

F1 ◦ F2 ◦ · · · ◦ Fi︸ ︷︷ ︸
i functions

◦T ◦ Fi ◦ · · · ◦ F2 ◦ F1︸ ︷︷ ︸
i functions

(X) = T (X).

Suppose we have an operation with i+ 1 functions:

F1 ◦ F2 ◦ · · · ◦ Fi ◦ Fi+1 ◦ T ◦ Fi+1 ◦ Fi ◦ · · · ◦ F2 ◦ F1(X).

Note that we insert the new function next to T because of the indexing, but we are not inducting
on the index; we are inducting on the number of functions in the sequence. Using our inductive
hypothesis, our expression reduces to our base case:

F1 ◦ F2 ◦ · · · ◦ Fi ◦ Fi+1︸ ︷︷ ︸
i functions

◦T ◦ Fi+1 ◦ Fi ◦ · · · ◦ F2︸ ︷︷ ︸
i functions

◦F1(X) = F1 ◦ T ◦ F1(X) = T (X).

Theorem 4.2.1. The DES cryptosystem satisfies the correctness property.

Proof. We prove this for a two-round DES scheme. Using Lemma 4.2.1, the proof easily general-
izes for a larger number of rounds. Take any plaintext message X. The corresponding ciphertext
message is IP−1 ◦ T ◦ F2 ◦ F1 ◦ IP (X). Our goal is to show that we can recover X by applying
the same function with the key schedule reversed; that is, IP−1 ◦ T ◦ F1 ◦ F2 ◦ IP (X) inverts
IP−1 ◦ T ◦F2 ◦F1 ◦ IP (X). Noting that IP and IP−1 are inverses and T is its own inverse, we
have

IP−1 ◦ T ◦ F1 ◦ F2 ◦ IP ◦ IP−1 ◦ T ◦ F2 ◦ F1 ◦ IP (X) = IP−1 ◦ T ◦ F1 ◦ F2 ◦ T ◦ F2 ◦ F1 ◦ IP (X)

= IP−1 ◦ T ◦ T ◦ IP (X)

= IP−1 ◦ IP (X)

= X

by Lemma 4.2.1.

This holds true independent of how f is implemented within each Fi.

S-Box Function

In DES, the S-box function f is used to produce a random, non-linear distribution of plaintext
messages over the ciphertext message space. Specifically, f : {0, 1}48 × {0, 1}32 −→ {0, 1}32 by
computing f(k,A) according to several predetermined components:

1. Expand A from 32 to 48 bits according to a fixed table.
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2. Compute k ⊕A.

3. Output 8-bit string B1, B2, . . . , B8, where each Bi is a 6-bit block.

4. Determine [S1(B1), . . . , S8(B8)], where Si : {0, 1}6 −→ {0, 1}4 is a fixed substitution map
for each i.

5. Apply a final fixed permutation.

The key schedule k1, k2, . . . , k16 is obtained from the original 56-bit encryption key k, where
k is padded to a 64-bit key k′ by adding a parity bit after every seventh bit of k. Each ki is the
substring of k′ used in the ith iteration.

The Security of DES

The security of the DES cryptosystem has long been subject to debate. The main criticism
focused on the length of the key, which made it vulnerable to brute force attacks. In order to
increase the key size, the algorithm could be run multiple times, each time with a different key.
Although the key size was considerably large, may prominent cryptographers maintained that
the NSA could break the DES encryption by brute force.

4.3 The Advanced Encryption Standard (AES)

The current encryption standard for the National Institute of Standards and Technology (NIST)
is the Advanced Encryption Standard (AES), also known as Rijndael. Rijndael, pronounced
Ran-dahl, was designed by the two Belgian cryptographers Vincent Rijmen and Joan Daeman
and was adopted as a standard in 2001 after an extensive five year competition between fifteen
designs.

Rijndael is a symmetric block cipher that uses keys of 128, 192, or 256 bits to encrypt and
decrypt 128-bit blocks. Here we focus only on a 128-bit key.

To encrypt or decrypt a message, a 128-bit block of plaintext, or respectively ciphertext is
divided into 16 bytes,

InputBlock = 〈m0,m1, . . . ,m15〉.

The key is divided in a similar fashion,

KeyBlock = 〈k0, k1, . . . , k15〉.

Rijndael operates on the 4× 4 matrix representations of the InputBlock and KeyBlock:

InputBlock =


m0 m4 m8 m12

m1 m5 m9 m13

m2 m6 m10 m14

m3 m7 m11 m15

 , KeyBlock=


k0 k4 k8 k12
k1 k5 k9 k13
k2 k6 k10 k14
k3 k7 k11 k15

 .
This algorithm, like DES, operates through a number of rounds. In the simplest case, a

128-bit message block and 128-bit key block require 10 rounds.
A round transformation is denoted by Round(State,RoundKey), where State is the 4 × 4

matrix returned by the previous transformation and RoundKey is a matrix derived from the
InputKey by some mapping known as the key schedule. When encrypting, the initial State is
the InputBlock of plaintext and the final State outputs the encrypted message. When decrypting,
the first State is the InputBlock of ciphertext, and the final round returns the original message.
Specifically, for any byte B = {0, 1}8,

Round : B4×4 ×B4×4 −→ B4×4,

where Round(State,RoundKey) = newState.
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With the exception of the final round, four internal transformations compose each round
transformation:

Round(State,RoundKey){
SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,RoundKey);

}
The final round, denoted FinalRound(State,RoundKey), differs from the preceding rounds

in that it omits the MixColumns operation.
Each round transformation inverts to decrypt. The inverse is denoted using the usual inverse

function notation Round−1 and FinalRound−1.

The Internal Functions of the Rijndael Cipher

Rijndael’s internal functions are defined over a binary extension of a finite field. This extension
is generated by the ring of all polynomials modulo f(X) = X8 +X4 +X3 +X + 1 over F2. It
is necessary to note that f(X) is irreducible.

Any element in the field can be viewed as a polynomial over F2 of degree less than 8, and all
operations are performed modulo f(X). Each element B = {0, 1}8 can therefore be written as

b7X
7 + b6X

6 + b5X
5 + b4X

4 + b3X
3 + b2X

2 + b1X + b0,

where bi ∈ F2 is the ith bit of B.

Example (Addition). Consider the polynomials g(X) = X5 +X3 +X + 1 and h(X) = X3 +
X2 +X. To compute g(X) + h(X) mod (f(X), 2),

(X5 +X3 +X + 1) + (X3 +X2 +X) = X5 + 2X3 +X2 + 2X + 1

≡ X5 +X2 + 1 mod (f(X), 2).

Because these operations are performed over F2, we can also view addition as exonerating the
bit values. Writing g(X) = 00101011 and h(X) = 00001110, we have

00101011⊕ 00001110 = 00100101

Example (Multiplication). Take the polynomials X3 +X and X6 +X + 1. Then

(X3 +X)(X6 +X + 1) = X9 +X7 +X4 +X3 +X2 +X

Over F2 we see Xf(X) = X9 + X5 + X4 + X2 + X, so X9 = Xf(X) + X5 + X4 + X2 + X.
Substituting this in above, we obtain

= Xf(X) +X7 +X5 + 2X4 +X3 + 2X2 + 2X

≡ X7 +X5 +X3 mod (f(X), 2).

The SubBytes(State) Function

The first internal transformation of the Rijndael cipher performs a nonlinear substitution on
each byte of State according to an 8× 8 lookup table A. Let sij ∈ F28 be a 1-byte element from
State for 0 ≤ i, j ≤ 3. After completing the SubBytes step, the newState matrix is

newState =


s′00 s′01 s′02 s′03
s′10 s′11 s′12 s′13
s′20 s′21 s′22 s′23
s′30 s′31 s′32 s′33

 ,
where

s′ij =

{
A · s−1ij ⊕ b, sij 6= 0

b, otherwise

for a fixed constant b.
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The ShiftRows(State) Function

The ShiftRows operation permutes each row of State. If

State =


s00 s01 s02 s03
s10 s11 s12 s13
s20 s21 s22 s23
s30 s31 s32 s33

 , then newState =


s00 s01 s02 s03
s11 s12 s13 s10
s22 s23 s20 s21
s33 s30 s31 s32

 .
The MixColumns(State) Function

The MixColumns operation acts on each column of State. Let

s =


s0
s1
s2
s3


be any column. We write this as a polynomial of degree 3 over F28 [X],

s(X) = s3X
3 + s2X

2 + s1X + s0.

Define the fiXed cubic polynomial

c(X) = c3X
3 + c2X

2 + c1X + c0 = 03X3 + 01X2 + 01X + 02,

where 03, 02, 01 ∈ F28 . The MixColumns transformation multiplies s(X) by c(X) in F28 [X]
modulo the polynomial X4 + 1:

d(X) = c(X)s(X) mod (X4 + 1, 28).

The resulting polynomial d(X) replaces the column s(X) in the newState matrix.

Lemma 4.3.1. Xi ≡ Xi mod 4 mod X4 + 1.

Lemma 4.3.2. d(X) = d3X
3 + d2X

2 + d1X + d0 where

di =
∑

k+j≡i mod 4

cksj

for 0 ≤ k, j ≤ 3.

Example. The coefficient of X2 in the product c(X)s(X) mod (X4 +1, 28) is d2 = c2s0 +c1s1 +
c0s2 + c3s3.

Since we are adding and multiplying in F28 , these results can represented through matrix
multiplication in F28 , 

d0
d1
d2
d3

 =


c0 c3 c2 c1
c1 c0 c3 c2
c2 c1 c0 c3
c3 c2 c1 c0



s0
s1
s2
s3

 .
The AddRoundKey(State) Function

In this final transformation, we add the elements of State to those of RoundKey byte by byte in
F28 .
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Decryption

Because each of the four internal functions is invertible, a message is decrypted by applying the
inverse encryption operations in reverse order.

Round−1(State,RoundKey){
AddRoundKey−1(State,RoundKey);

MixColumns−1(State);

ShiftRows−1(State);

SubBytes−1(State);
}

The SubBytes function is the crucial step, since it provides the necessary nonlinear element
for the cipher. The ShiftRows and MixColumns operations are then used to spread the entropy
of the input. While AES does take several steps to complete an encryption, its overall simplicity
adds to its appeal.

It is to be noted that Rijndael should use different codes and hardware circuits for encryption
and decryption.

5 Modes of Operation

Block ciphers process messages of a fixed length by breaking them into fixed-size pieces and
operating on each piece. In practice, messages have varying lengths. Different modes of operation
allow us to circumvent this issue by adding nondeterminism and padding plaintext to a fixed
length invariant. Here we discuss four modes. The following notation will be helpful:

• P: Plaintext Message

• C: Ciphertext Message

• E: Encryption Algorithm

• D: Decryption Algorithm

• IV: Initial Vector

Electronic Codebook Mode

The electronic codebook mode (ECB) is the simplest mode of operation. A plaintext message
is divided into blocks of an appropriate length and each is encrypted individually.

P1 P2

C1 C2

EE
..........

Figure 2: Electronic Codebook Mode
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The Cipher Block Chaining Mode

The cipher block chaining mode (CBC) outputs a sequence of cipher blocks, each dependent on
all preceding blocks. The original plaintext is segmented into blocks P1, P2, . . .. The first block
P1 is exonerated with a random n-bit initial vector before being encrypted as C1. C1 is then
exonerated with P2. In general, Ci is the vector used when encrypting Pi+1. One benefit of
CBC is that the initial vector need not be kept secret.

P1

C1

E E

IV

E

P2

C2

P3

C3

Figure 3: Cipher Block Chaining Mode

The Counter Mode

The counter mode (CTR) first feeds the encryption algorithm a counter-value. The encrypted
counter-value is exonerated with the first block of plaintext P1 to obtain the cipherblock C1. A
different counter-value is used for each Pi, so every cipherblock is independent. Because of this,
CTR has the ability to encode all blocks simultaneously or in no particular order.

The Output Feedback Mode

The output feedback mode (OFB) first encrypts a fixed, random n-bit initial vector, which it
then exonerates with P1. When P2 is added, the encrypted initial vector is again run through the
encryption algorithm. In this manner, the encryption algorithm only acts on the initial vector.
By repeatedly encrypting IV , a stream of code is created that interacts with the plaintext.
Unlike the counter mode however, the order of the cipherblocks matters.

6 Diffie-Hellman Key Exchange Protocol

In 1976, Whitefield Diffie and Martin Hellman published their paper New Directions in Cryp-
tography, revolutionizing modern cryptography. Prior to this publication, all significant cryp-
tographic techniques relied on some pre-agreed upon key. In their paper however, Diffie and
Hellman proposed a protocol that enabled two parties, having no prior communication, to jointly
establish a secret key over an insecure channel. Here we will introduce the concrete key exchange
protocol and examine its security in the presence of both passive and active adversaries.

6.1 The Diffie-Hellman Protocol

Figure 5 illustrates the concrete Diffie-Hellman key exchange protocol. To begin, two parties,
Alice and Bob, choose the values xA and xB respectively. These can be determined using the
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P1

C1

E E E

IV

P2

C2

P3

C3

Figure 4: Output Feedback Mode

coin flipping techniques discussed in Section 2.8. Neither party discloses their value to the other.

Common Input: 〈G, q, g〉
Alice Bob

xA
r←− Zq xB

r←− Zq
yA ← gxA yB ← gxB

yA
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

yB
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kA ← yxAB p kB ← yxBA p

Output kA Output kB

Figure 5: The Diffie-Hellman key exchange protocol, where g is a generator of a subgroup of G
of order q.

The notation x
r←− Zq means that x is sampled according to the uniform over Zq. Observe

that yxAB = yxBA mod p, so kA = kB and both parties compute the same value in (the order q
subgroup of) G.

In Section 1.1 we mentioned our interest in the goals, designs, primitives, models, and proofs
of cryptography. The goal of a key exchange protocol is to establish a key in the presence of an
eavesdropper. Our design of interest is the Diffie-Hellman protocol, whose primitives rely on the
protocols for sampling random elements. Continuing with this theme, we now naturally want
to know how to model the security of the key exchange protocol and investigate the underlying
assumptions required for the Diffie-Hellman key exchange to be provably secure.

6.2 Number-Theoretical Problems Related to DLP

Here we introduce several potentially hard number theory problems that allow the Diffie-Hellman
protocol to reduce. In the following sections, we examine the proper security definition and
reduce the security of the protocol to an appropriate number-theoretical assumption.

Definition 6.2.1. For a suitable cyclic group G = 〈g〉, take y ∈ G of order q. The discrete
logarithm problem (DL) is to find an integer x ∈ Zq such that gx = y.
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We have no proof that this problem is hard. To the best of our knowledge, the number of
steps necessary to find a solution is super-polynomial in the size of the group element, assuming
the group is chosen appropriately.

Definition 6.2.2. Given a cyclic group G = 〈g〉 of order q, ga and gb where a, b
r←− Zq, the

computational Diffie-Hellman problem (CDH) is to compute gab.
An adversary attacking the Diffie-Hellman protocol does not specifically care about DL. His

objective is to solve CDH. It is clear however, that if an adversary could solve DL and derive x
from gx, he could solve CDH with a single exponentiation. This therefore establishes a reduction
between the discrete logarithm problem and the computational Diffie-Hellman problem: CDH
≤ DL.

Lemma 6.2.1. The computational Diffie-Hellman problem is no harder than the discrete loga-
rithm problem.

It is unknown if the converse holds.

Definition 6.2.3. The decisional Diffie-Hellman problem (DDH) is as follows: given a

group G = 〈g〉 of order q and ga, gb, gc, where a, b, c
r←− Zq, decide if c = ab or c

r←− Zq.
This is a very weak problem since it only asks an adversary to determine whether or not c is

randomly generated. If an adversary could solve CDH, he could solve DDH by computing gab

and comparing it to gc; thus, DDH ≤ CDH.

Lemma 6.2.2. The decisional Diffie-Hellman problem is no harder than the computational
Diffie-Hellman problem.

Moreover, this last problem is no harder than the discrete logarithm problem.
In the sequel we will show that the Diffie Hellman protocol is secure under an assumption

that relates to the DDH problem.

6.3 The Decisional Diffie-Hellman Assumption

Informally, DDH assumes that it is difficult to distinguish between tuples of the form 〈g, ga, gb, gab〉
and 〈g, ga, gb, gc〉, where g belongs to a multiplicative group and a, b, and c are randomly chosen
exponents.

Definition 6.3.1. The group generator GGen is said to satisfy the decisional Diffie-Hellman
assumption provided the following probability ensembles {Dλ}λ∈N and {Rλ}λ∈N are compu-
tationally indistinguishable:

Dλ :=
{
〈G, q, g〉 ← GGen(1λ); a, b

r←− Zq : (G, q, g, ga, gb, gab)
}

Rλ :=
{
〈G, q, g〉 ← GGen(1λ); a, b, c

r←− Zq : (G, q, g, ga, gb, gc)
}

where q = ord(g).
Equivalently, if A is a statistical test bounded by probabilistic polynomial-time (PPT), then

AdvA, the advantage of A is negligible in λ, i.e. :

AdvA(λ) = ∆A[Dλ,Rλ] =

∣∣∣∣Prob
γ←Dλ

[A(γ) = 1]− Prob
γ←Rλ

[A(γ) = 1]

∣∣∣∣ = negl(λ)

6.3.1 Statistical distance for DDH

It is of note that for the statistical distance ∆[Dλ,Rλ] we have ∆[Dλ,Rλ] ≥ 1 − 2−λ which is
close to 1. In order to show why this result derives, first we consider that the number of possible
values of a random variable which follows the Dλ distribution is q2, because this is the number
of all different pairs (ga, gb). On the other hand, the number of possible values of a random
variable distributed according to Rλ is q3. As a result, these values contain as a subset the
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values of the random variable distributed according to Dλ. Now, we calculate the statistical
distance as follows:

∆[Dλ,Rλ] =
1

2

(
q2 ·

∣∣∣ 1

q2
− 1

q3

∣∣∣+ (q3 − q2) ·
∣∣∣0− 1

q3

∣∣∣)

= 1− 1

q
.

Due to q being a λ-bit integer, the result follows. This may seem paradoxical, as the result
seems to imply that DDH is easy rather than hard. The key point is that the DDH assumption
is computational i.e. even if the two distributions are very dissimilar, we believe it is hard to
efficiently tell them apart.

6.4 Modeling Security against Passive Adversaries

When defining security, it is important to keep in mind the anticipated adversary. In this section,
we focus on passive adversaries. A passive adversary eavesdrops on the communication channel
and attempts to extract information about the key without interfering. Before we examine the
security definitions, we establish some common notation.

Let transA,B(1λ) be the distribution of the transcripts of the interactions between two
players A and B. In the Diffie-Hellman protocol, the transcript includes the common input and
any exchange of information. The common key produced at the end of a transcript τ is denoted
key(τ). Finally, a predicate V is an algorithm whose only outputs are 1 and 0 (True and False).

Security Model 1

The most obvious security model for any key exchange defines the protocol to be secure if an
adversary cannot obtain any part of the key. More specifically, for all PPT adversaries7 A,

Prob
τ←transA,B(1λ)

[A(τ) = key(τ)]

is a negligible function in λ. Under this model, it is plausible for an adversary to obtain all
but a small amount of information about the key; it is therefore inadequate. The number of bits
protected by this model can be as few as log2(λ).

Security Model 2

For all PPT adversaries A and predicates V , we define a key exchange to be secure if

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≤ 1

2
+ negl(λ)

for some negligible function negl(λ). This model is ideal in that, if our protocol is secure,
an adversary cannot identify any information about the key space. Unfortunately, this is also
unrealistic.

Assume this model does define security and there is a PPT adversary A capable of breaking
the key exchange protocol. Then there is a predicate V such that

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≥ 1

2
+ α,

where α is non-negligible. Let B be a DDH distinguisher such that, given γ = 〈G,m, g, a, b, c〉,
B uses γ to form a transcript τγ = 〈G,m, g, a, b〉. B then simulates A on τγ to obtain its output
S. B will return 1 if V (c) = S and 0 if V (c) 6= S. When c is a random element of the cyclic
group G, let Prob[V (c) = 1] = δ.

7We say adversary to mean any PPT algorithm.
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1. If γ ← Dλ, then c = key(τγ) and Prob
γ←Dλ

[B(γ) = 1] ≥ 1

2
+ α.

2. If γ ← Rλ, then c
r←− G and

Prob
γ←Rλ

[B(γ) = 1] = Prob
〈G,m,g,a,b,c〉←Rλ

[A(G,m, g, a, b) = V (c)]

= Prob[A(τγ) = V (c)]

= Prob[A(τγ) = V (c) | V (c) = 1] · Prob[V (c) = 1] + . . .

. . .+ Prob[A(τγ) = V (c) | V (c) = 0] · Prob[V (c) = 0]

= Prob[A(τγ) = 1] · Prob[V (c) = 1] + Prob[A(τγ) = 0] · Prob[V (c) = 0]

In the special case where δ = 1/2, we see

Prob
γ←Rλ

[B(γ) = 1] = (Prob[A(τγ) = 1] + Prob[A(τγ) = 0])
1

2
=

1

2
.

Looking at the DDH assumption,

AdvB ≥
(

1

2
+ α

)
− 1

2
= α.

Because α is non-negligible, B can break the DDH assumption when it has A and δ = 1/2,
which is what we wanted. However, this fortunate result relies critically on the value of δ.

When δ 6= 1/2, it is easy to find a V that the adversary can guess with probability better
than 1/2 (e.g., V can be the “or” of the first two bits of c). As a result, all schemes fail under
this unreasonably strong model.

Security Model 3

Finally, we explore a model under which the security of the key exchange protocol can be proven.
This will define passive security. We have to acknowledge that an adversary can distinguish some
part of the key, so let

Prob
τ←transA,B(1λ)

[V (key(τ)) = 1] = δ,

where transA,B(1λ) is the distribution of the transcripts of the interactions between two players
A and B.

Definition 6.4.1. We say that a key exchange protocol is secure under the Security Model 3,
if for any PPT adversary A and any predicate V such that Prob

τ←transA,B(1λ)
[V (key(τ)) = 1] = δ, it

holds that

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≤ max {δ, 1− δ}+ negl(λ).

We continue by proving that Diffie-Hellman key exchange protocol is secure against passive
adversaries under this security model. Namely, we will prove the following theorem.

Theorem 6.4.1. If the DDH assumption holds, the Diffie-Hellman key exchange protocol is
secure against passive adversaries under Security Model 3.

Proof. Assume there exists a PPT adversary A and predicate V such that

Prob
τ←transA,B(1λ)

[A(τ) = V (key(τ))] ≥ max {δ, 1− δ}+ α, (2)

for a non-negligible α. We will construct a PPT distinguisher B that breaks the DDH assumption
with non-negligible probability.
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Let B be a PPT DDH distinguisher that on input γ = 〈G, q, g, a, b, c〉 invokes A on input
τγ = 〈G, q, g, a, b〉 and receives its output s. If V (c) = s, then B outputs 1 otherwise it outputs
0. We will show that if (2) holds then∣∣ Prob

γ←Dλ
[B(γ) = 1]− Prob

γ←Rλ
[B(γ) = 1]

∣∣ ≥ β,
for β non-negligible (i.e B breaks DDH).

Behavior on DDH tuples: For γ ← Dλ, we have that

Prob
γ←Dλ

[B(γ) = 1] = Prob
γ←Dλ

[A(τγ) = V (c)]

= Prob
γ←Dλ

[A(τγ) = V (key(τγ))]

≥ max{δ, 1− δ}+ α. (3)

Behavior on random tuples: When γ ← Rλ, it holds that

Prob
γ←Rλ

[B(γ) = 1] = Prob
γ←Rλ

[B(γ) = 1|V (c) = 1] Prob
γ←Rλ

[V (c) = 1] + Prob
γ←Rλ

[B(γ) = 1|V (c) = 0] Prob
γ←Rλ

[V (c) = 0]

= Prob[A(τγ) = 1] · Prob[V (c) = 1] + Prob[A(τγ) = 0] · Prob[V (c) = 0],

because c is a random element and therefore A’s output is independent from the value V (c). Let
δ′ = Prob

γ←Rλ
[V (c) = 1]. Then, we have that

Prob
γ←Rλ

[B(γ) = 1] = Prob[A(τγ) = 1]δ′ + Prob[A(τγ) = 0](1− δ′)

≤ Prob[A(τγ) = 1](max {δ′, 1− δ′}) + Prob[A(τγ) = 0](max {δ′, 1− δ′})
= max {δ′, 1− δ′} (Prob[A(τγ) = 1] + Prob[A(τγ) = 0])

= max{δ′, 1− δ′}. (4)

We assert that |δ − δ′| ≤ q−1
q2 . We postpone the proof for readability. By the assertion, it

holds that

|δ − δ′| ≤ q − 1

q2
⇔ |(1− δ)− (1− δ′)| ≤ q − 1

q2
,

So, we have that

δ′ ≤ δ +
q − 1

q2
and 1− δ′ ≤ 1− δ +

q − 1

q2

which means that

δ′ ≤ max{δ, 1− δ}+
q − 1

q2
and 1− δ′ ≤ max{1− δ}+

q − 1

q2

Consequently it holds that

max{δ′, 1− δ′} ≤ max{δ, 1− δ}+
q − 1

q2
. (5)

Now, from (4), (5), we have

Prob
γ←Rλ

[B(γ) = 1] ≤ max{δ, 1− δ}+
q − 1

q2
. (6)
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Difference of the two behaviors Finally, from (3), (6)∣∣Prob
γ←Dλ

[B(γ) = 1]− Prob
γ←Rλ

[B(γ) = 1]
∣∣ ≥ Prob

γ←Dλ
[B(γ) = 1]− Prob

γ←Rλ
[B(γ) = 1]

≥
(

max{δ, 1− δ}+ α
)
−
(

max{δ, 1− δ}+
q − 1

q2
)

= α− q − 1

q2
,

which is non-negligible. By setting β = α − q−1
q2 the proof of security of the Diffie-Hellman

protocol is completed.

Claim. It holds that |δ − δ′| = q−1
q2 = negl(λ).

Proof. Let E be a polynomial time algorithm that computes the predicate V . Then,

δ = Prob
γ←Dλ

[V (c) = 1] = Prob
x,y

r←Zq
[E(gxy) = 1] and δ′ = Prob

γ←Rλ
[V (c) = 1] = Prob

t
r←Zq

[E(gt) = 1].

So, ∣∣δ − δ′∣∣ =
∣∣ Prob
x,y

r←Zq
[E(gxy) = 1]− Prob

t
r←Zq

[E(gt) = 1]
∣∣ = ∆E [{x, y

r← Zq : gxy}, {t r← Zq : gt}]

≤ ∆[{x, y r← Zq : gxy}, {t r← Zq : gt}] (7)

Inequality (7) follows from theorem 2.7.1 regarding statistical and computational distance.
We compute

∆[{x, y r← Zq : gxy}, {t r← Zq : gt}] =
1

2

∑
z∈〈g〉

∣∣ Prob
x,y

r←Zq
[gxy = z]− Prob

t
r←Zq

[gt = z]
∣∣. (8)

We have that for some z ∈ G

Prob
x,y

r←Zq
[gxy = q] = Prob

x,y
r←Zq

[x = 0] Prob
x,y

r←Zq
[gxy = q|x = 0] + Prob

x,y
r←Zq

[x 6= 0] Prob
x,y

r←Zq
[gxy = q|x 6= 0]

=

{
1
q · 1 + q−1

q ·
1
q = 1

q + q−1
q2 , z = g0

1
q · 0 + q−1

q ·
1
q = q−1

q2 , z 6= g0
(9)

By (8), (9),

∆[{x, y r← Zq : gxy}, {t r← Zq : gt}] =
1

2

(∣∣ Prob
x,y

r←Zq
[gxy = g0]− Prob

x,y
r←Zq

[gt = g0]
∣∣+∑

z∈G\{g0}

∣∣ Prob
x,y

r←Zq
[gxy = z]− Prob

x,y
r←Zq

[gt = z]
∣∣)

=
1

2

(∣∣∣(q − 1

q2
+

1

q

)
− 1

q

∣∣∣+ (q − 1)
∣∣∣q − 1

q2
− 1

q

∣∣∣)
=
q − 1

q2
. (10)

By (7), (10) we get

|δ − δ′| ≤ q − 1

q2
, (11)

which is negl(λ) since q = ω(poly(λ)). This completes the proof of the claim.
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Algorithm A(p, q, g, a, b, c)
if (aq/2 = 1 ∨ bq/2 = 1) ∧ (cq/2 = 1)

then output 1
else output 0

Figure 6: A PPT algorithm that breaks the DDH assumption when 〈g〉 = Z∗p, a, b, c ∈ 〈g〉, and
q = ord(g) is even.

6.5 Suitable Group Generators for the DDH Assumption

In this section, we examine the DDH assumption over two groups.
First consider 〈g〉 = Z∗p for a large prime p. This group is potentially a poor choice; in fact,

we can construct a PPT algorithm A as in Figure 6 that breaks the DDH assumption.
By Euler’s Theorem, Z∗p has order q = p− 1. Since p is odd for all primes greater than 2, q

is even for any nontrivial group.
Let γ = 〈p,m, g, a, b, c〉 where a = gx, b = gy, and c = gxy. If x is even, write x = 2k for

some k ∈ Z. Then
aq/2 = (gx)q/2 = gkq = 1. If x is odd, write x = 2j + 1 for some j ∈ Z. Then aq/2 =

(g2j+1)q/2 = gq/2 = −1.
The same result holds for gy depending on if y is even or odd. The parity of xy clearly

depends on the parity of x and y, so cq/2 = (gxy)q/2 = 1 as long as one of x or y is even. Thus,

Prob
γ←D

[A(γ) = 1] =
3

4
.

If instead γ ← R, so c = gz for a randomly chosen z, there is an equal probability that z will
be even or odd. So

Prob
γ←R

[A(γ) = 1] =
3

8
.

Based on this information,

AdvA =
3

4
− 3

8
=

3

8
.

In an ideal situation, both probabilities are close to 1/2, so their difference is negligible. Since
AdvA = 3/8, A can distinguish between the two tuples. It is therefore ineffective to build a key
exchange over Z∗p.

One group we can build a key exchange over is the quadratic residue QR(p) of Z∗p. For
example, if p = 2q+ 1 for a prime q, QR(p) has order q. To the best of our knowledge, this is an
adequate group. Recall that QR(p) = 〈g2〉 for a generator g of Z∗p, so QR(p) is a cyclic group of
odd order.

6.6 From Elements to Integers, a Modified Diffie-Hellman Protocol

Under the DDH assumption, the generated key is a random element from a group 〈g〉 whose
structure we know very little about (to see the problem consider writing an algorithm that has
the objective to produce 10 uniformly distributed bits with only source of randomness coming
from the operation y

r← 〈g〉).
This becomes problematic when using the key in cryptographic applications. Here we look

at how to extract a random integer from a random group element. This is useful in that we
generally understand the structure of integers as opposed to elements of some arbitrary group.

One approach is to define a predicate V such that Probx←〈g〉[V (x) = 1] = 1/2. V then
defines one unpredictable bit from the adversary’s point of view. It is unclear however, how to
find even one such predicate. One must completely understand the structure of the group in
order to discern a random bit.
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We will instead, give a practical example for the popular order group G = QR(p), the order
q subgroup of Z∗p where p = 2q + 1, p, q are prime and p ≡ 3 mod 4 and define the map

H : Zq −→ QR(p)

by x 7→ (x+ 1)2 mod p. This is a bijection. To show it is injective, assume H(x) = H(y) for
some x, y ∈ Zq. Then

(x+ 1)2 ≡ (y + 1)2 mod p

(x+ 1)2 − (y + 1)2 ≡ 0 mod p

x2 + 2x− 2y − y2 ≡ 0 mod p

(x− y)(x+ y + 2) ≡ 0 mod p.

So either x− y ≡ 0 mod p or x+ y+ 2 ≡ 0 mod p. Since x, y ∈ Zq, we have 0 ≤ x, y ≤ q− 1.
Then

x+ y + 2 ≤ 2(q − 1) + 2 = 2q

< 2q + 1 ≡ 0 mod p.

Thus x+ y + 2 6≡ 0 mod p, which leaves only x− y ≡ 0 mod p, or equivalently x ≡ y mod p.
Since x, y ∈ Zq ⊂ Zp, it holds that x = y, showing H is injective. H is surjective by the following
pre-image of any y ∈ QR(p),

H−1(y) =

{
y(p+1)/4 mod p− 1, if y(p+1)/4 mod p ∈ {1, 2, . . . ,m}
p− y(p+1)/4 mod p− 1, otherwise.

Using this, we can modify the key exchange protocol as is seen in Figure 7.

Common Input: 〈p, q, g〉
Alice Bob

xA
r←− Zq xB

r←− Zq
yA ← gxA mod p yB ← gxB mod p

yA
−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

yB
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−

kA ← H−1(yxAB mod p) kB ← H−1(yxBA mod p)

Output kA Output kB

Figure 7: The modified Diffie-Hellman key exchange protocol where p is a large prime, g generates
the group QR(p) of order q, and H : Zq −→ QR(p) by x 7→ (x+ 1)2 mod p.

Under the modified Diffie-Hellman key exchange protocol, we can now use the bijection H
to pass from a random element from a group whose structure we do not fully understand to a
random integer modulo q.

Exercise: We have shown how to derive a random element from Zq. This enables us to access
cryptographic applications requiring a random integer modulo q as a key. Most applications
however, necessitate that the key be a bit string. Determine how to extract the longest possible
bit string from an integer modulo q.

It is interesting to note that in a λ-bit key, the probability that the least significant bit is 1
is very close to 1/2, while the probability that the most significant bit is 1 can be far from 1/2.

6.7 Stronger Adversaries

While the Diffie-Hellman key exchange protocol, as given in Section 6.6, is secure against an
eavesdropper, it does not remain so against a more active adversary. In Figure 3, we show the
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man-in-the-middle attack in which the adversary, Malorie, participates in the exchange of
information between Alice and Bob. The adversary is now the communication channel itself.
Malorie can inject messages into the conversation and impersonate the identity of each party to
the other. In doing so, Malorie creates two keys, one to share with Alice and one to share with
Bob.

This attack exemplifies the need to authenticate and verify authentication on each exchange.
Next we introduce a digital signature, which is an important cryptographic primitive, essential
in defending against tactics like the man-in-the-middle attack.

Common Input: 〈p, q, g〉

Alice Malorie Bob

xA
r←− Zz xM , xM′

r←− Zz xB
r←− Zz

yA ← gxA mod p yM ← gxM mod p yB ← gxB mod p
yM′ ← gxM′ mod p

yA
−−−−−→

yM′
−−−−−→

yM
←−−−−−

yB
←−−−−−

kA ← H−1(yxAM mod p) kM ← H−1(yxMA mod p) kB ← H−1(yxBM′ mod p)
kM′ ← H−1(y

xM′
B mod p)

Output kA Output kM , kM′ Output kB

Figure 8: The “man-in-the-middle” attack on the Diffie-Hellman key exchange protocol.

7 Digital Signatures

A digital signature is a fundamental cryptographic primitive, technologically equivalent to a
handwritten signature. In many applications, digital signatures are used as building blocks in
larger cryptographic protocols and systems.

In a signature scheme, each party holds a unique signing key sk that uniquely signs a message
M . Each party publishes their corresponding public verification key pk. Only someone with
knowledge of sk can sign a message, but all parties have access to pk and can verify a signature.
Such schemes are useful in that they prevent someone with just a verification key from computing
a signing key with more than a negligible probability. Moreover, it is unfeasible for an adversary
to produce a valid message-signature pair associated to a verification key.

Definition 7.0.1. A digital signature scheme is a triple of algorithms (Gen,Sign,Verify)8 such
that

• The key generation algorithm Gen
(
1λ
)
: Output the pair (vk, sk). We call vk the verifica-

tion or public key and sk the signing of secret key.

• The signing algorithm Sign (vk, sk,M): Output σ. We call σ the digital signature of M ,
signed under the secret key sk.

• The verification algorithm Verify (vk,M, σ): Output True (or 1) if the signature is valid,
False (or 0) otherwise.

A digital signature scheme (Gen,Sign,Verify) must have the correctness and unforgeability
properties.

• Correctness: For any M ∈ {0, 1}∗,

Prob
(vk,sk)

$←−Gen(1λ)

[Verify (vk,M,Sign (vk, sk,M)) = 1] ≥ 1− negl (λ) .

8Gen and Sign are PPT algorithms, Verify is a deterministic polynomial-time algorithm.
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• Unforgeability (informal): There exists no PPT adversary that can produce a valid
message-signature pair without receiving it from external sources.

There are several versions of cryptographic games that model unforgeability, with different
levels of security guarantees each. Here we introduce a version known as existential un-
forgeability against adaptively chosen message attacks (EUF-CMA, Figure 9). In the
adaptively chosen message attack, the adversary A wants to forge a signature for a particular
public key (without access to the corresponding secret key) and has access to a signing oracle,
which receives messages and returns valid signatures under the public key in question. Let Q be
the set of messages for which A requested a signature from the signing oracle.

• (vk, sk)← Gen
(
1λ

)
• (M,σ)← ASign(vk,sk,·)

• If M /∈ Q ∧ Verify (vk, σ,M) = 1, output 1
• Else, output 0

Figure 9: GameA
Sign

EUF−CMA

(
1λ
)
: Unforgeability against chosen message attacks.

We say that a digital signature scheme has the existential unforgeability property against
adaptively chosen message attacks if

∀ PPTA,Prob[GameA
Sign

EUF−CMA

(
1λ
)

= 1] ≤ negl (λ) .

For brevity, we will simply call such schemes secure.

7.1 Trapdoor One-Way-Functions

A trapdoor one-way-function fe : Xe 7→ Ye with parameters (e, z) ← Gen(1λ) is a function
which satisfies the following:

• Easy to compute : there exists a PPT algorithm that on input x returns fe(x).

• Hard to invert : for every PPT algorithm A,

Prob[x
$←− Xe; A(e, fe(x)) ∈ f−1e (fe(x))] ≤ negl(λ).

• Easy to invert with trapdoor : There exists PPT algorithm T such that

T (e, z, fe(x)) ∈ f−1e (fe(x)).

Note that it must be |Xe| ∈ ω (poly (λ)), otherwise an adversary, on input 〈e, y〉, could simply
try every x ∈ Xe until fe (x) = y.

7.2 Collision Resistant Hash Functions

In general, a hash function is a mapping that takes a message of arbitrary length and returns
an element of bounded size.

The ideal hash function should be easily computable, noninvertible, and behave like an
injection in the sense that it is extremely unlikely for two messages to map to the same string
(a.k.a. hash).

We need a family of hash functions in order to define what a collision-resistant hash function
is. That is because the adversary can have hardwired a collision pair in his code and output it
every time we ask him. Note that this is not a problem for the security of the one-way function,
since in that case we ask the adversary for the inversion of a random element in the range of the
function.

Thus, a family of hash functions F = {Hi : Di 7→ Ri}i∈I is collision resistant if it satisfies
the following:
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• Easy to sample : There exists a PPT algorithm Gen, such that for all λ ∈ N,Gen(1λ) ∈ I.

• Easy to compute : There exists a PPT algorithm that on input i ∈ I, x ∈ Di returns
Hi(x).

• Compressing : For all i ∈ N, |Ri| < |Di|.

• Collision resistant : For every PPT algorithm A, for all λ ∈ N:

Prob[i← Gen(1λ); (x, y)← A(1λ,Hi) : Hi(x) = Hi(y)] ≤ negl(λ)

7.3 Random Oracles

A random oracle is a function that produces a random looking output for each query it receives.
It must be consistent with its replies: if a question is repeated, the random oracle must return
the same answer. The absence of any concrete structure in random oracles makes them useful in
cryptographic applications when abstracting a hash function. If a scheme is secure assuming the
adversary views some hash function as a random oracle, it is said to be secure in the Random
Oracle Model .

Figure 10 illustrates how a hash function H is modeled as a random oracle.

• Given M /∈ History , choose t
r←− Ye and add (M, t) to History. Return t.

• Given M such that (M, t) ∈ History for some t, return t.

Figure 10: A random oracle, where History represents the set of all (input,output) pairs previ-
ously served by the oracle.

7.4 Digital Signatures from Trapdoor One-Way-Functions

Definition 7.4.1. Let H : {0, 1}∗ 7→ Ye collision resistant hash function and fe : Xe 7→ Ye trap-
door one way function with parameter generation algorithm GenTOWF and trapdoor algorithm
T . We define the following digital signature scheme:

• Gen(1λ): (vk, sk)← GenOWF(1λ). Output (vk, sk).

• Sign(vk, sk,M): h← H(M);σ ← T (vk, sk, h). Output σ.

• Verify(vk,M, σ): If fe(σ) = H(M) output True; otherwise output False.

Figure 11: It easy to verify that fe(σ) = H(M), but is difficult to find a pre-image of M .

It is straightforward to see that if fe is a trapdoor one-way-function, then the scheme of 7.4.1
satisfies correctness:
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Proof of Correctness for 7.4.1. For any (vk, sk) returned by Gen
(
1λ
)

and for every M ∈ {0, 1}∗,
it is:

Verify (vk,M,Sign (vk, sk,M)) = Verify (vk,M, T (vk, sk,H (M)))

Since fe (T (pk, sk,H (M))) = H (M), Verify will return True.

We will now prove that the digital signature scheme is secure in the Random Oracle Model
( i.e. H will be modeled as a Random Oracle) under the assumption that fe is trapdoor one-
way-function.

Theorem 7.4.1. Consider the Digital Signature scheme defined in 7.4.1 with security parameter
1λ for some λ ∈ N. Suppose that fe : Xe 7→ Ye is a bijective (a.k.a. one-to-one) trapdoor one-
way-function with |Xe| = |Ye| ≥ 2λ and that H : {0, 1}∗ 7→ Ye is a Random Oracle. Then for
every PPT algorithm A that breaks the security of the scheme, i.e.

∀ PPTA : ∃α > negl(1λ) with Prob
[
GameA

Sign

EUF−CMA

(
1λ
)

= 1
]

= α ,

there exists PPT algorithm B that violates the one-way property of fe, i.e.

∃ PPT B : Prob
[
x

$←− Xe;B (e, fe (x)) = x
]
≥ 1

qH
·
(
α− 1

2λ

)
,

where qH is the number of queries A makes to the random oracle H.

Proof. Let A be a PPT algorithm that finds a forged signature with probability a. We will
specify a PPT algorithm B that violates the one-way property of fe.

Figure 12: The attacker B must simulate H and Sign to use attacker A.

Let (e, z) ← GenTOWF

(
1λ
)
, x

$←− Xe and y = fe (x). Note that, since fe is a bijection,
@x′ 6= x : fe (x′) = y. B is given input 〈e, y〉 and its goal is to find x. To do this, B gives e
to A as verification key. A will make both signing and random oracle queries, both of which B
must answer. We assume B knows qH . This is not a problem as A is polynomial-time bounded
and qH is smaller than the number of steps in the execution of A. Figure 12 illustrates how B
operates when given access to A.

First suppose A does not invoke the signing algorithm Sign, so A produces (M,σ) after
making qH queries to the random oracle H. B answers these queries by simulating H as in
Figure 13. We will now justify why B departs from the Random Oracle description of Figure 10.
We will prove that this departure does not invalidate the Random Oracle Model as the last step
of this proof. By our assumption, σ is a valid forged signature for M with probability a. If it
is valid (event D), it is σ = f−1e (H (M)). If furthermore H (M) = y (event L), then σ is a
pre-image of y.

Observe that, if B simulates the Random Oracle as in 10, and given that D takes place, the
event L happens with negligible probability, as

Prob [L|D] = Prob [H (M) = y|D] =
1

|Ye|
≤ 1

|Xe|
≤ negl(1λ) .
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In order to obtain this result with non-negligible probability, B deviates from Figure 10 when

answering the random oracle queries of A. B now chooses j
$←− {1, . . . , qH} and answers the jth

query with y. More specifically, the modified random oracle is parametrized by qH and y and
operates as follows:

Choose j
$←− {1, 2, ..., qH}.

• Given M such that @(M, ) ∈ History : If this is the jth distinct query, set t = y, else choose t
$←− Ye.

Add (M, t) to History. Return t.
• Given M such that (M, t) ∈ History for some t, return t.

Figure 13: A modified random oracle simulation as used by algorithm B to “plug-in” a challenge
y into the oracle’s responses.

Consider the event E, that (M, ) ∈ History when the internal execution of A by B is over,
and the event ¬E, the complement. Also let S be the event that A successfully produces a
forged signature. The theorem hypothesis states that Prob [S] = a. On the other hand, observe
that Prob [S|¬E] ≤ 1

|Ye| ≤ 2−λ. This is the case since given the event ¬E, the adversary has not

asked M to H and thus the value of H (M) is undetermined until the final step of B takes place.
Since the adversary has already produced σ, Prob [H (M) = fe (σ) |¬E] = 1

|Ye| ≤ 2−λ.

Given now the event E, there is a 1
qH

chance the random oracle simulation will correctly
guess the query on which M is asked. We call this the event G. If G occurs, it follows that
H (M) = y, i.e. y would be plugged into the right location. If additionally the event S took
place, the algorithm B would have successfully recovered a pre-image of y. We call this the event
V , i.e. V = S ∧G. We next provide a lower bound on V . First we have that Prob [S|¬E] ≤ 2−λ,
therefore

Prob [S ∧ ¬E] = Prob [S|¬E] · Prob [¬E] ≤ 2−λ .

Based on this we obtain the lower bound

Prob [S ∧ E] = Prob [S]− Prob [S ∧ ¬E] ≥ a− 2−λ .

Next we split the probability space according to E and calculate the probability of V as follows:

Prob [V ] = Prob [V |E] · Prob [E] + Prob [V ∧ ¬E] ≥ Prob [S ∧G|E] · Prob [E] .

Due to the independence of the events S,G in the conditional space E (verify!) and because
Prob [G|E] = 1

qH
, we have that

Prob [V ] ≥ Prob [S|E] · Prob [G|E] · Prob [E] = Prob [G|E] · Prob [S ∧ E] ≥ a− 2−λ

qH
.

This completes the argument in case A makes no queries to the signing oracle. We next consider
the general case where the number of queries to the signing oracle, qS , is a polynomial in λ. We
denote the queries to the signing oracle by M1, . . . ,MqS . B must answer such queries in a way
that is consistent with the random oracle queries: if B returns σi, it holds that σi = f−1e (H (Mi)),
so fe (σi) = H (Mi). This implies that (Mi, fe (σi)) is in History. We can accomodate this by
again modifying the simulation of H performed by B as seen in Figure 14.

Now when asked to sign Mi, B first asks the random oracle for Mi (this does not count
towards the j RO queries) and then consults the History table for a record of the form (Mi, ti, ρi).
Unless ρi = �, it proceeds to answer the signing query with ρi. Observe that the signing oracle
simulation is perfect as long as ρi 6= �, since fe (ρi) = ti, i.e., ρi is the pre-image of ti = H (Mi).
The case ρi = � means that the guess of B for j is mistaken (due to the condition that a
successful forgery must be on a message that A does not query to the signing oracle) and thus
the simulation of B will fail. However, for the event ρi = �, call it F , it holds that G ∩ F = ∅.
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Choose j
$←− {1, 2, ..., qH}.

• Given M such that @(M, , ) ∈ History : If this is the jth distinct query, set t = y, ρ = �,
else choose ρ

r←− Xe and set t = fe(ρ).
Enter (M, t, ρ) in History. Return t.

• Given M such that (M, t, ρ) ∈ History for some t, return t.

Figure 14: A second modified random oracle simulation as used by algorithm B to “plug-in” a
challenge y into the oracle’s responses while keeping the “pre-images” of the oracles responses
under the fe map.

Observe that, like before, Prob [G|E,¬F ] = 1
qH

because, in the conditional space ¬F and
given that A queries the random oracle for the hash of M , because of the way j is chosen in 14,
B has probability 1

qH
of correctly predicting A’s query of M .

We can again deduce that Prob [S ∧ ¬E] ≤ 2−λ using similar arguments to the ones in the
case of no queries to the signing oracle, therefore once more it is Prob [S ∧ E] ≥ a−2−λ. We also
observe that, since if event F happens the signature forgery always fails, it is Prob [S ∧ E ∧ F ] =
0⇒ Prob [S ∧ E ∧ ¬F ] = Prob [S ∧ E]. Also the events G and S are independent. Thus we have

Prob [V ] ≥ Prob [S ∧G|E,¬F ] · Prob [E ∧ ¬F ] =

Prob [S|E,¬F ] · Prob [G|E,¬F ] · Prob [E ∧ ¬F ] =

Prob [S ∧ E ∧ ¬F ] · Prob [G|E,¬F ] ≥
(
a− 2−λ

) 1

qH

To finish the proof we need to ensure that the adversary A cannot distinguish the random
oracle as defined in Figure 14 from the one defined in Figure 10. Indeed, observe that now
qH − 1 of the values returned to A are of the form fe (ρ), as opposed to random values t
selected uniformly from Ye. This nevertheless turns out not to be an issue since fe is a bijection
and as a result fe (ρ) is a random variable that is uniformly distributed over Ye given that ρ is
uniformly distributed over Xe. As for the jth query, we recall that the input y to B is distributed

uniformly at random over Ye (since y = fe (x) and x
$←− Xe). It is thus chosen from the exact

same distribution as the jth query to the original Random Oracle (Figure 10).

7.5 The RSA Function: The eth Power Map on Z∗n
The RSA cryptosystem was developed in 1977 at MIT by Ron Rivest, Adi Shamir, and Leonard
Adleman. It was the first public-key encryption scheme that could both encrypt and sign mes-
sages. As with the Diffie-Hellman key exchange protocol, the system enabled two parties to
communicate over a public channel.

Suppose Alice decides to send our dear friend Bob a message. In order to facilitate a private
conversation over an insecure channel, Bob selects and publishes the integers n and e. Alice
writes her message x and computes

E(x) = xe mod n,

known as the eth power map of x. She then sends y = E(x) to Bob, who in order to see the
message, must compute the eth root of y. This is believed to be hard, as we discussed in Section
6.2. If Bob selects n and e appropriately however, there is an alternate method. We will see
that Bob can apply the dth power map to y to recover x,

D(y) = yd = xed ≡ x1+ϕ(n)k ≡ x mod n

where k ∈ Zn and the Euler function ϕ(n) is defined as follows:

Definition 7.5.1. For n ∈ N, the Euler function ϕ(n) counts the number of integers in Zn
relatively prime to n:
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ϕ(n) = # {k ∈ Zn : gcd(k, n) = 1} .

Equivalently, ϕ(n) is the number of invertible elements in Zn:

ϕ(n) = # {k ∈ Zn : k` = 1 for some ` ∈ Zn} .

To compute Euler’s function,

ϕ(n) =


pe − pe−1, n = pe for prime p
j∏
i=1

ϕ(peii ), n = pe11 · · · p
ej
j for distinct primes pi.

When n = pe, it is easy to count the number of integers modulo n that p does not divide.
Extending ϕ to a composite integer n = pe11 · · · p

ej
j falls from the fact that ϕ is multiplicative

on relatively prime integers: ϕ(mn) = ϕ(m)ϕ(n) when gcd(m,n) = 1. This can be shown by
proving

Z∗mn ∼= Z∗m × Z∗n
using the Chinese Remainder Theorem.

We are interested in the special case where n is the product of two large primes p and q. The
multiplicative group Z∗n = {a ∈ Zn : gcd(a, n) = 1} consists of ϕ(n) = (p − 1)(q − 1) elements.
In order for the above protocol to be effective (i.e. for Bob and no one else to know d), take e
to be a prime such that 1 ≤ e ≤ ϕ(n) and gcd(e, ϕ(n)) = 1. Then the eth power map

E : Z∗n −→ Z∗n,

defined by x 7→ xe mod n is invertible. In particular, when ed ≡ 1 mod ϕ(n), the dth power map
D inverts E. If Bob choses e and ϕ(n) carefully, he can easily recover d using the Euclidean
algorithm.

It is clear that the strength of this technique lies primarily in Bob’s choice of n. If p and q
are obvious, any interested party can compute ϕ(n) and therefore d. Likewise, given n and ϕ(n),
one can compute d. This implies that finding eth roots in Z∗n relies on the factorization of n.
Since the factorization problem is believed to be hard, the RSA function appears to be difficult
to invert in polynomial-time. This then constitutes a one-way function. The RSA assumption
states that it is hard to invert the RSA function.

Proposition 7.5.1. The function E(x) : Z∗n 7→ Z∗n is trapdoor one-way function.

Proof. • It is easy to compute.

• It is hard to invert if we do not know the factorization of n (RSA assumption).

• There exist a PPT algorithm, that computes D(y).

7.6 RSA Digital Signatures

The ideal hash function should be easily computable, noninvertible, and behave like an injection
in the sense that it is extremely unlikely for two messages, no matter how similar to map to the
same string or hash. In this section, we will assume our hash function H to be ideal with the
range

H : {0, 1}∗ −→ Z∗n,

where {0, 1}∗ =
⋃∞
k=0 {0, 1}

k
. Note that in practice, the range of H will be Zn \ {0} and we will

rely on the fact that 1− Z∗n
Zn \ {0}

is negligible to argue that effectively sampling from Zn \ {0}

is indinstinguishable sampling from Z∗n.
In the RSA signature scheme,

[Draft of February 28, 2020]



49

• The key generation algorithm Gen: First choose two random primes p and q such that
|p| = |q| = λ. Compute n = pq and ϕ(n) = (p− 1)(q− 1). Second, choose a random prime
e < ϕ(n) such that gcd(e, ϕ(n)) = 1 and compute d ≡ e−1 mod ϕ(n). The verification key
is (n, e) and the signing key is d. A full-domain hash function H is available to all parties.

• The signing key Sign: Given d and a message M , output the digital signature σ =
H(M)d mod n.

• The verification algorithm Verify: Given (n, e) and (M,σ), verify that σe = H(M) mod n.
If equality holds, the result is True; otherwise the result is False.

8 Zero-Knowledge Proofs

A proof of knowledge is a protocol that enables one party to convince another of the valid-
ity of a statement. In a zero-knowledge proof , this is accomplished without revealing any
information beyond the legitimacy of the proof. We will examine several examples of zero-
knowledge proofs and then formalize a definition. We begin our discussion by looking at the
general formulation.

We have two parties, the prover P and the verifier V. P must convince V that she has some
knowledge of a statement x without explicitly stating what she knows. We call this knowledge a
witness w. Both parties are aware of a predicate R that will attest to w being a valid witness
to x. In general,

• The predicate R is assumed to be polynomial-time computable: given a witness w for a
statement x, one can efficiently test that R(x,w) = 1.

• The prover P has R, x, and w such that R(x,w) = 1. She wishes to prove possession of w
by producing a proof of knowledge π.

• The verifier V has R, x, and π.

In order for the above protocol to be useful in cryptographic applications, we can make the
following assumptions.

• Given R, it is hard to find a corresponding w such that R(x,w) = 1.

• The prover P is reluctant to reveal w; otherwise the solution is trivial.

• The verifier V can efficiently check the validity of π.

8.1 Examples of Zero-Knowledge Proofs

To demonstrate these concepts, we present two simple examples.

Example (Where’s Waldo). In the game Where’s Waldo, there is a large board depicting an
intricate scene of characters, all of whom resemble “Waldo”. The objective of the game is to
discern Waldo from amongst the look-alikes.

Suppose the old comrades, Alice and Bob decide to play. Alice claims to have found Waldo’s
exact location, but she does not want to show Bob. After all, antagonizing one’s openent makes
many games more entertaining.

Here the assumption that Waldo exists is the statement, Waldo’s (x, y) coordinates are the
witness, and the procedure of receiving (x, y) and verifying that Waldo is indeed there relates
to the predicate R.

One possible solution, and admittedly not the only one, is for Alice to cover the board with a
large piece of paper with a small, Waldo-sized hole in its center. To prove she has found Waldo,
Alice moves the paper so that Waldo, and nothing else, is visible through the hole. Note that
for this solution to be effective, the dimensions of the paper must be at least twice those of the
board.
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Example (Magic Door). After being soundly beaten in Where’s Waldo, Bob convinces Alice
to go spelunking. The two eventually come to a cave as depicted in Figure

15. At the bottom of the cave, there is a magic door that can only be opened using a secret
password. Bob proposes a new game to prove to Alice he can open the magic door.

1

2

3 4

Magic Door

Figure 15: The door between Points 3 and 4 can only be opened using a secret password.

1. Alice stands at Point 1.

2. Bob enters the cave and stands either at Point 3 or 4.

3. After Bob disappears, Alice walks to Point 2.

4. Alice calls to Bob, asking him to come out either the left or the right passage.

5. Bob complies, using the secret password if necessary.

6. Alice and Bob repeat Steps 1-5 k times.

This game illustrates how a probabilistic procedure can be used to model protocols of interest.
In particular, after k repetitions, Bob can convince Alice with probability 1−1/2k that he knows
the magic words.

We now present two practical examples that use proofs of knowledge.

Example. We return to the NP class: the set of all problems for which a candidate solution can
be verified in polynomial-time. We call a set of strings a language . Let x denote any problem
statement and let R represent a polynomial-time predicate. Then a language L is in NP if

L = {x : R(x,w) = 1 for some w} .

Take the language CLIQUE = {〈G, k〉 : G is a graph with a clique of size k}. The witnesses
are the sets of k verticies forming a clique, and the polynomial-time predicate R verifies that the
verticies form a clique.

Another language is SAT = {〈Φ〉 : Φ is a satisfiable boolean formula}. One can check in
polynomial-time that a set of variables assigned to Φ ∈ SAT satisfies Φ. Zero-knowledge proofs
can be used to prove a specific element is in CLIQUE or SAT. We will address how in Section 8.5

Example. One key application for zero-knowledge proofs is in user identification schemes. In
traditional password mechanisms, an eavesdropping adversary can obtain enough information
to gain unauthorized access in a system. In order to allay this problem, suppose the system
contains a public directory that assigns a statement of a theorem to each user. In order to gain
access to the system, a user must produce a proof of their theorem. Assuming that only an
authorized user knows a witness to their proof, a zero-knowledge proof can convince the system
of the proofs authenticity. This is directly related to the Schnorr Protocol, which we will discuss
in section 8.3.
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8.2 Three Basic Properties

Formalizing the definition of a proof of knowledge is a very delicate task. The following definition
emerged after fifteen years of work, and has since been deemed an intellectual achievement.

Definition 8.2.1. Let 〈P,V〉 be a pair of interactive programs running polynomial-time in
public input x. Define outPP,V(x,w, z) to be the output of P when both P and V are executed

with the public input x and private inputs w and z (P determines w and V chooses z); outVP,V
is similarly defined for V. The PPT interactive protocol 〈P,V〉 is a zero-knowledge proof for
a language L ∈ NP if the following properties hold.

• Completeness: If x ∈ L and R(x,w) = 1 for some witness w, then outVP,V(x,w, z) = 1
for all strings z with overwhelming probability in |x|.

• Soundness: For any polynomial-time program P∗ define for arbitrary x,w, z,

πx,w,z = Prob[outVP∗,V(x,w, z) = 1].

A protocol 〈P,V〉 satisfies soundness if for all P∗ there exists a probabilistic Turing machine
(PTM) program K, called a knowledge extractor with the following property. Suppose
that

π̃x,w,z = Prob[K(x,w, z) = w′ : R(x,w′) = 1].

Then it holds that πx,w,z is non-negligible in |x| implies that π̃x,w,z is non-negligible in |x|.

• (Statistical) Zero-Knowledge (SZK): For each polynomial-time program V∗, there is a
PTM program S, called the simulator , such that for all x,w with R(x,w) = 1, the random
variables S(x, z) and outV

∗

P,V∗(x,w, z) are statistically indistinguishable for all strings z:

∀A
∣∣∣Prob[A(S(x, z)) = 1]− Prob[A(outV

∗

P,V∗(x,w, z)) = 1]
∣∣∣ = negl(|x|)

Completeness is very similar to correctness. Assuming both the prover and verifier follow
the protocol faithfully, completeness guarantees that the protocol will succeed with a sufficiently
high probability.

The intention of soundness ensures that the protocol will fail when executed by a prover using
a false witness and an honest verifier. This is a minimal requirement. The formal definition above
asserts something must stronger. It guarantees that a knowledge extractor K can derive a valid
witness from any convincing prover. This implies K should have some more power than the
verifier. In particular, K has access to the program of the prover, something that the verifier
does not (the verifier is a program that interacts with the prover, whereas the knowledge extractor
is a program that is derived from the program of the prover).

We note that our formulation of soundness is a bit more restrictive (albeit much simpler)
than previous formulations in the literature, as it will fail protocols that allow a substantial
cheating probability for the prover (e.g., 1/2). In most interesting cases such protocols can be
made to satisfy our definition through parallel or sequential repetition.

Intuitively, statistical zero-knowledge is a property that prohibits a verifier from extracting
information from an honest prover. If the verifier is able to learn anything, there must be an
algorithm that simulates the protocol without access to a witness. Moreover, the execution of
the algorithm is indistinguishable from that of the protocol.

A weaker version of zero-knowledge is honest-verifier zero-knowledge (HVZK). Here it
is assumed that the verifier executes the protocol faithfully, but makes additional computations.
Specifically, this is captured in the definition above by restricting V ∗ to simulate the verifier
V and in the end, simply output the whole communication transcript. Achieving this much
weaker property is sometimes also referred to as semi-honest verifier zero-knowledge. Even
though this relaxes the SZK specifications, it can be used to obtain zero-knowledge proofs in
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situations employing generic methods. Proving honest verifier zero-knowledge boils down to pro-
ducing accepting protocol transcripts that are indistinguishable from the honest prover-verifier
transcripts, without the use of a witness.

8.3 The Schnorr Protocol

One classic three-move protocol that exhibits the properties of a zero-knowledge proof is the
Schnorr protocol, also know as the Σ-protocol.

P
offer

−−−−−−−−−−−−−−−−−−−−→ V
challenge

←−−−−−−−−−−−−−−−−−−−−
response

−−−−−−−−−−−−−−−−−−−−→

The Schnorr protocol operates over a cyclic group G = 〈g〉 of order m. From our previous
discussion, P and V have group generators 〈p,m, g〉. The prover P chooses a witness w ∈ Zm
such that h = gw mod p for some h ∈ 〈g〉. The verifier V is given p,m, g and h, and must confirm
that w = logg h.

This can also be described as a language. Define DLOG = {〈〈p,m, g〉, h〉 : h = gw mod p for some w ∈ Zm}.
(DLOG stands for “discrete logarithm”.) Under the Schnorr protocol, there is a very efficient
way to prove any statement 〈〈p,m, g〉, h〉 is in DLOG without revealing w = logg h.

1. P choses t
r←− Zm and sends y = gt to V.

2. V chooses a challenge c
r←− Zm and sends c to P.

3. P computes s = t + wc mod m and sends s to V. V checks and accepts if and only if
gs = yhc.

If both the prover and the verifier are honest, it holds that

gs = gt+wc = gt(gw)c = yhc.

The Schnorr protocol is therefore complete and can always convince an honest verifier.
This protocol instigates a special case of the soundness property. Before we formalize an

extraction algorithm, let us look at how we can obtain information from a convincing prover P.
Suppose we are capable of generating two accepting conversations from P with the challenge

values c 6= c′: 〈y, c, s〉 and 〈y, c′, s′〉. If both s and s′ are valid, then gs = yhc and gs
′

= yhc
′
. By

solving both equations for y we obtain

y = gsh−c = gs
′
h−c

′

hc−c
′

= gs−s
′

h = g(s−s
′)/(c−c′)

While this does not justify how we can reverse-engineer P to obtain the second conversation,
it does show that we can extract the witness as (s− s′)/(c− c′) mod m. We will assume we have
access to P in a way that allows us to stop at any given point, return to a previous step, and
re-simulate the operation.

It is helpful to view the probabilistic program P in two steps:

1. P(first, 〈p,m, g〉, h) outputs 〈y, aux〉

2. P(second, 〈p,m, g〉, c, aux) outputs 〈s〉
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where aux represents the internal information P uses, but does not publish. Using this, we can
develop a knowledge extractor K with the following structure:

1. Let ρ1
r←− {0, 1}λ1 be the coin tosses required by the first step of P. Fix the randomness

of P with ρ1 and simulate P(first, 〈p,m, g〉, h) to obtain y.

2. Choose c
r←− Zm.

3. Let ρ2
r←− {0, 1}λ2 be the coin tosses required by the second step of P. Simulate P(second, 〈p,m, g〉, c, aux)

with fixed randomness ρ2 to obtain s.

4. Choose c′
r←− Zm and ρ′2

r←− {0, 1}λ2 . Repeat steps 2 and 3 to obtain s′; output 〈y, c, s〉 and
〈y, c′, s′〉.

If the knowledge extractor obtains two accepting conversations, we can directly reconstruct
the witness as previously discussed. It remains to show that the knowledge extractor produces
two accepting conversations with an adequate probability. To prove this, we need the following
lemma.

Lemma 8.3.1 (Splitting Lemma). Let X and Y be finite sets. Call A ⊆ X × Y the set of
good elements of X × Y . Suppose there is a lower bound on the number of good elements such
that

|A| ≥ α |X × Y | .

Define the set of super-good elements A′ to be the subset of A such that

A′ =
{

(x, y) ∈ A : kx >
α

2
|Y |
}

where kx is the number of y ∈ Y such that (x, y) ∈ A for a fixed x. Then

|A′| ≥ α

2
|X × Y | .

Proof. We prove this by contradiction. Assume |A′| / |X × Y | < α/2, so

|A| = |A′|+ |A \A′| < α

2
|X × Y |+ |A \A′| . (12)

For any (x, y) ∈ A \ A′, we have that kx ≤ (α/2) |Y |. Since there are only |X| distinct xs,
|A \A′| ≤ (α/2) |X| |Y |. From (12) we now obtain

|A| < α

2
|X × Y |+ α

2
|X| |Y | .

This contradicts the lower bound on |A|, so |A′| ≥ α/2 |X × Y |.

Returning now to the efficiency of our knowledge extractor K, define

X × Y =
{

(ρ1, (c, ρ2)) : ρ1 ∈ {0, 1}λ1 , (c, ρ2) ∈ Zm × {0, 1}λ2

}
.

If the prover is successful with at least probability α, we define A to be the set of (ρ1, (c, ρ2))
that the verifier accepts. Then |A| ≥ α |X × Y |. This suggests we can fix a good sequence
(ρ1, (c, ρ2)) in A so that the resulting conversation from K is accepting. By Lemma 8.3.1, K
hits a super-good sequence in steps 1 through 3 with probability α/2.

Suppose the knowledge extractor does hit a super-good sequence. Then there is again an α/2
probability that K hits another super-good sequence when repeating in Step 4. The probability
that both conversations are accepting is therefore α2/4. Moreover, there is only a 1/m chance
that K will generate the same challenge values c = c′.

Consider now the following: let S be the event that the knowledge extractor is successful.
Next let C be the event that c 6= c′ in the second choice, let D be the event that the sequence
(ρ1, (c, ρ2)) is super-good, and let E be the event that the sequence (ρ1, (c

′, ρ′2)) is good.
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It follows that

Prob[S] ≥ Prob[C ∧D ∧ E] ≥ Prob[D ∧ E]− Prob[¬C] =
α2

4
− 1

m
.

This proves that the Schnorr protocol satisfies the soundness property.
Our three-move protocol satisfies honest-verifier zero-knowledge. To show this, we present

an algorithm capable of simulating an accepting conversation between an honest prover and a
(semi) honest verifier. Suppose that when given the public predicate information 〈〈p,m, g〉, h〉,
the simulator S randomly chooses c and s from Zm and outputs 〈gsh−c, c, s〉. Recall that the

output in the honest model is 〈gt, c, t+wc mod m〉 where t, c
r←− Zm. One can easily verify that

the two probability distributions are identical; thus, HVZK holds.

How to go beyond HVZK. While HVZK is a relatively weak property, it is useful in extend-
ing protocols to SZK. There are two generic ways to do this employing two kinds of commitment
schemes, both of which rely on the apparent importance of the prover choosing y independent
from c.

In the first method, the verifier is the first to send a message. Before receiving y, V chooses c
and computes (c′, σ)← Commit(c). V then sends c′ to the prover. When P sends y, the verifier
returns (c, σ) to open the commitment. If Verify(c, c′, σ) = 0, the prover stops the protocol;
otherwise the protocol is completed using the challenge c.

The commitment scheme satisfies the binding property, so V cannot change c. Statistical
zero-knowledge therefore holds. The hiding property is satisfied by the commitment scheme,
so P cannot obtain any information about c so soundness is not violated. A simulator for the
zero-knowledge property must then be able to extract c from c′. This is called the extractable
property for a commitment.

In the second method, the prover is once again the first to send a message. After computing
y, P computes (y′, σ) ← Commit(y) and sends y′ to V. Once V returns c, P sends (y, σ, s) to
open the commitment. If Verify(y, y′, σ) = 0, the verifier stops the protocol.

Since the commitment scheme satisfies the hiding property, y′ contains no useful information
about y. V is therefore forced to pick c independent from y as desired. This scheme satisfies the
zero-knowledge property.

Note that soundness is not violated under this scheme because the binding property prohibits
P from opening y in two different ways. In this setting then, a simulator must be able to bypass
the binding property on the commitment; that is, if the simulator commits an arbitrary y∗,
after receiving the challenge c, it can choose y = gsh−c. Commitments that allow this type of
violation are called equivocal .

Observe that the first scheme added a new move to the protocol, whereas the second main-
tained the standard three-move structure. For this reason, the second scheme is sometimes
preferred. Still the above discussion merely reduces the problem to the design of commitment
schemes with either the equivocal or the extractable property for the simulator.

8.4 Non-Interactive Zero-Knowledge Proofs

We now introduce a non-interactive version of the Schnorr identification scheme based on what
is known as the Fiat-Shamir Heuristic.

To make a proof non-interactive, we use a hash function H : {0, 1}∗ −→ Zm such that a
conversation 〈y, c, s〉 = 〈gt, H(gt), t + H(gt)w mod m〉. This mandates that c be selected after
y, implicitly relying on the properties of the hash function.

To show that SZK holds, assume H is a random oracle controlled by the simulator. In the
Random Oracle Model, a dishonest verifier V∗ may make queries to the random oracle. Figure
16 illustrates how V∗ interacts with H.

When the verifier asks for a proof of h = gw, the simulator randomly chooses c and s to
calculate y = gsh−c. It enters (y, c) in History and returns 〈y, c, s〉. The dishonest verifier
cannot distinguish between an honest prover and the simulator unless (y, c′) ∈ History with
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Figure 16: The simulation of a dishonest verifier V∗ in the Random Oracle Model.

c 6= c′. Then V∗ succeeds with probability (1/m)qH , where qH is the number of random oracle
queries.

Next consider soundness in the Random Oracle Model. As with the Schnorr protocol, we
want to generate two accepting conversations with the same y and different challenge values.
Using these two conversations, we can extract a witness. Note that c = H(y). If a dishonest
prover P∗ makes a single query to the random oracle before producing 〈y, c, s〉, the analysis is
same as with the interactive protocol. Problems arise however when P∗ makes more than one
query.

Suppose in the initial round P∗ makes qH queries before outputting a conversation. When
a knowledge extractor returns P∗ to a previous step, there is no guarantee that P∗ will again
make qH queries. When P∗ terminates, it could return 〈y′, c′, s′〉 with c′ = H(y′) and y 6= y′.
This reduces our ability to extract a witness, so we must adjust the probability of obtaining two
accepting conversations with the same y.

Assume that after making qH queries, P∗ chooses one query and uses the corresponding
response from the random oracle in its output. Let Prob[A] = α denote the probability that
the resulting conversation is accepting. Let Prob[Qi] = βi represent the probability that the
dishonest prover completes the ith conversation with 1 ≤ i ≤ qH . Define Prob[A ∩ Qi] = αi,
then

qH∑
i=1

αi = α and

qH∑
i=1

βi = 1.

Define Prob[E] to be the probability of extracting a witness from P∗. We then have that

Prob[A ∩Qi] = Prob[A | Qi] · Prob[Qi]

so Prob[A | Qi] = αi/βi. From our calculations in Section 8.3, we obtain

Prob[E | Qi] ≥
Prob[A | Qi]2

4
− 1

m
=

α2
i

4β2
i

− 1

m
.

The overall probability is calculated as follows.
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Prob[E] =

qH∑
i=1

Prob[E | Qi] · Prob[Qi]

≥
qH∑
i=1

(
α2
i

4β2
i

− 1

m

)
βi

=
1

4

qH∑
i=1

α2
i

βi
−

qH∑
i=1

βi
m

=
1

4

qH∑
i=1

α2
i

βi
− 1

m

qH∑
i=1

βi

=
1

4

qH∑
i=1

α2
i

βi
− 1

m

≥ 1

4qH

(
qH∑
i=1

αi

)2

− 1

m

=
α2

4qH
− 1

m

We can therefore conclude that given a convincing prover, we can extract a witness with
probability at least

α2

4qH
− 1

m
.

8.5 Honest-Verifier Zero-Knowledge for all NP

Anything in NP can be proven in a three-move honest-verifier zero-knowledge protocol. Consider
the language HC of all Hamiltonian graphs. Recall that a Hamiltonian cycle π is a path in
a graph G that visits each vertex precisely once before returning to the starting point. HC is
NP -complete, so a proof of knowledge for HC would provide a proof of knowledge for all NP
problems: given any instance of a problem in NP , we can transform it into a graph with a
Hamiltonian cycle if and only if the instance is a “Yes” instance. We can then use the HC proof
for any NP problem.

A graph with n vertices can be represented by an n × n binary matrix called the graph’s
adjacency matrix . If the ith vertex is connected to the jth vertex, the ij entry in the matrix
is 1; otherwise it is 0. Given a permutation π over {1, ..., n} and a graph G defined by its
adjacency matrix (aij), we define the permuted graph Gπ as the graph that has the adjacency
matrix (a′ij) = (aπ−1(i)π−1(j)). A Hamiltonian cycle in a graph can in fact be represented by a
permutation π of the vertices with the special property that the graph Gπ includes the edges
(1, 2), (2, 3), ..., (n− 1, n), (n, 1).

If π is a Hamiltonian cycle for a graph G and π′ is an arbitrary permutation, then π′−1 ◦ π
is a Hamiltonian cycle for the graph Gπ

′
.

HVZK proofs are used to verify that a Hamiltonian cycle corresponds to a given graph
without revealing the cycle. Figure 17 demonstrates how such an HVZK proof is executed. Note
that a dishonest prover can continue unnoticed with probability κ = 1/2. Suppose that a prover
commits to a fake adjacency matrix such that she constructs a Hamiltonian cycle. If the verifier
returns c = 1, the prover is able to convince the verifier that she knows a Hamiltonian cycle for
the graph. But if the prover receives c = 0, the verifier learns that the prover did not commit
to an accurate permutation of the graph. Through k repetitions however, we can decrease the
knowledge error to κ = 1/2k and thus prove the soundness property.
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P(private input π) V
The graph G

Pick a random permutation
π′ of the graph G; commit to
the adjacency matrix of Gπ

′


com11 · · · com1n

...
. . .

...
comn1 · · · comnn


−−−−−−−−−−−−−−−−−−−−−−→

c
r←− {0, 1}

c
←−−−−−−−−−−−−−−−−−−−−−−

If c = 0, open all commit-
ments and send π′−1;
If c = 1, tell for each row
which commitments need to
be opened (depends on π)

Open com based on c
−−−−−−−−−−−−−−−−−−−−−−→

Verify the commitments:
If c = 0, check that the ma-
trix equals Gπ

′
;

If c = 1, check that a cycle
was revealed

Figure 17: A proof of knowledge for a Hamiltonian cycle. In addition to committing to the
adjacency matrix of Gπ

′
, the prover must make a separate commitment comij to each entry in

the matrix.

8.6 The Conjunction of Two Zero-Knowledge Proofs

There are instances in which a prover wants to validate multiple statements through one interac-
tion, either for efficiency or privacy. This can be done using a single challenge value to preserve
the desirable three-move structure. Upon receiving the challenge, the prover combines the offers
and responses as is seen in Figure 18.

Theorem 8.6.1. The conjunction of two honest-verifier zero-knowledge proofs satisfies the sound-
ness and HVZK properties.

8.7 The Disjunction of Two Zero-Knowledge Proofs

In Section 8.1 we mentioned that some user-identification schemes contain directories cataloging
statements of theorems assigned to each user. In such schemes, privacy issues may arise when
users wish to gain access without explicitly identifying themselves. In the disjunction of two
zero-knowledge proofs, the identification protocol asks the user P to provide witnesses to two
statements. The user obviously knows a witness to one of the statements, but does not need
to disclose which one. The system V sends a single challenge value which the prover uses to
fabricate a witness to the second statement. Figure 19 depicts the execution of a disjunction.

Theorem 8.7.1. The disjunction of two honest-verifier zero-knowledge proofs satisfies the sound-
ness and HVZK properties.
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P V P V
h1 = gx1 h2 = gx2

y1=g
t1

−−−−−−−−−−−−−−−−−−−−→
y2=g

t2

−−−−−−−−−−−−−−−−−−−−→
c1

←−−−−−−−−−−−−−−−−−−−−
c2

←−−−−−−−−−−−−−−−−−−−−
s1=t1+c1x1

−−−−−−−−−−−−−−−−−−−−→
s2=t2+c2x2

−−−−−−−−−−−−−−−−−−−−→

P V
y1=g

t1 ,y2=g
t2

−−−−−−−−−−−−−−−−−−−−→
c

←−−−−−−−−−−−−−−−−−−−−
s1=t1+cx1, s2=t2+cx2

−−−−−−−−−−−−−−−−−−−−→

Figure 18: The conjunction of two zero-knowledge proofs for the discrete logarithm.

P V
h1 = gx1 , h2 = gx2

y1 = gt1

s2, c2
r←− Zm

y2 = gs2h−c22
y1,y2

−−−−−−−−−−−−−−−−−−−−→

c1 = c− c2 mod m
c

←−−−−−−−−−−−−−−−−−−−−

s1 = t1 + c1x1
c1,c2,s1,s2

−−−−−−−−−−−−−−−−−−−−→ c
?
= c1 + c2

gs1
?
= y1h

c1
1

gs2
?
= y2h

c2
2

Figure 19: The disjunction of two zero-knowledge proofs for the discrete logarithm showing how
the prover can show the verifier he knows one of the two discrete logarithms of h1, h2 (without
revealing which one). In this case the prover P knows a witness for h1.

9 Public-Key Encryption

In Section 4 we defined symmetric cryptosystems as encryption and decryption algorithms that
share common key spaces. In an asymmetric cryptosystem, there are two distinct key spaces.

Definition 9.0.1. An asymmetric cryptosystem is composed of the the following elements:

• A plaintext message space M = {Mλ}λ∈N
• A ciphertext message space C = {Cλ}λ∈N
• A public key space P = {Pλ}λ∈N and a secret key space S = {Sλ}λ∈N
• An efficient encryption algorithm E : Kp ×M −→ C that preserves λ: E(Pλ ×Mλ) ⊆ Cλ
• An efficient decryption algorithm D : Ks × C −→M that preserves λ: D(Sλ × Cλ) ⊆Mλ

• An efficient key generation algorithm G : N −→ P × S that preserves λ: G(1λ).

In addition to the above, an asymmetric cryptosystem must satisfy the correctness property
that

• For all M ∈M and 〈pk, sk〉 ∈ Kp ×Ks, D(sk, E(pk,M)) = M.

[Draft of February 28, 2020]



9.1 AON-CPA Security 59

9.1 AON-CPA Security

AON-CPA is one of the weakest security models for an asymmetric public-key cryptosystem.
AON refers to the adversarial goal, “all-or-nothing”, where an attacker attempts to decrypt
the ciphertext to obtain the plaintext. CPA corresponds to the adversarial capability, the chose-
plaintext attack. In a chosen-plaintext mode of attack, it is assumed that the attacker can obtain
encryptions on messages of his choosing. Using these plaintext-ciphertext pairs, the attacker
may be able to weaken the targeted system and experiment with the public-key encryption
mechanism.

Definition 9.1.1. A public-key cyrptosystem is AON-CPA secure provided

Prob[A(pk, c) = M : 〈pk, sk〉 ← G(1λ), c← E(pk,M), M
r←−Mλ]

is negligible in λ for all adversaries A.
This model is weak in that it assumes the adversary wants to recover the entire plaintext.

Moreover, such plaintext is random. AON-CPA does not prevent an attacker from recovering
partial information.

9.2 IND-CPA Security

A stronger security model is IND-CPA. An adversary is allowed to submit two plaintext messages
to the encryption oracle, which returns an encryption on one of the two plaintexts at random.
The adversary must then discern which of the two plaintexts was returned. The adversarial goal
IND stands for indistinguishablility. We can model this by the following game, GameAIND-CPA(1λ).

1. 〈pk, sk〉 ← G(1λ)

2. 〈aux,M0,M1〉 ← A(play, pk) for M0 6= M1

3. b
r←− {0, 1}

4. c← E(pk,Mb)

5. b∗ ← A(guess, aux, c)

6. If b = b∗ output 1; otherwise 0.

Figure 20 illustrates this game.

b {0,1}Adversary

Public Key 

c

   0 1

           b

b 

If b=b then return 1 else 0*

*

=
A

E

M ,M

pk

pk,��M

r

( )

IND-CPA

Figure 20: The IND-CPA attack. If b = b∗, we say the adversary wins the game.

Definition 9.2.1. A public-key cryptosystem is IND-CPA secure if for all PPT adversaries A,

Prob[GameAIND-CPA(1λ) = 1] ≤ 1

2
+ negl(λ).
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Example. The RSA encryption scheme below is not IND-CPA secure. In fact, all deterministic
public-key encryption schemes fail IND-CPA security.

G(1λ) : 〈pk, sk〉 ← G(1λ)
pk = (n, e)
sk = d

E(pk,M) : M ∈ {0, 1}λ
compute c = Me mod n
output c

D(sk, c) : M = cd mod n
output M

RSA encryption fails IND-CPA security because a fixed message is always encoded as the
same ciphertext. Since the adversary has access to the encryption algorithm, he has the ability
to view encryptions on both his messages independent of the system. When the oracle returns
one of the encrypted messages, the adversary can reference his calculations to determine which
message he was given. This implies that a scheme that is secure under IND-CPA must be a
probabilistic protocol.

We can modify the RSA function to view it as a probabilistic scheme.

G(1λ) : 〈pk, sk〉 ← G(1λ)
pk = (n, e)
sk = d

E(pk,M) : M ∈ {0, 1}λ−λ0

r ∈ {0, 1}λ0

M ′ = bit2integer(r‖M)
compute c = M ′e mod n
output c

D(sk, c) : M ′ = cd mod n
(r‖M) = integer2bit(M ′)
output M

By introducing the randomness r, the protocol no longer encrypts a message the same every
time. This modification circumvents the problem found in the deterministic model. It is still
uncertain however, if this probabilistic variant is susceptible to the IND-CPA attack.

9.3 ElGamal Encryption

ElGamal encryption is an asymmetric public-key algorithm that is provably secure in the IND-
CPA model. It is based on the Diffie-Hellman key exchange, so it is defined over a cyclic group
G = 〈g〉 of prime order q.
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G(1λ) : 〈pk, sk〉 ← G(1λ)

x
r←− Zq, h = gx

pk = 〈〈G, q, g〉, h〉
sk = x

E(pk,M) : M ∈ 〈g〉
r

r←− Zq
compute U = gr, V = hrM
output 〈G,H〉

D(sk, U, V ) : compute M = V/Ux

output M

Correctness Proving correctness is simple: We start with D(sk, E(pk,M)) which we expand
to D(x, U, V ) which will return V/Ux. But V/Ux = (hrM)/grx = (hrM)/hr = M .

Security We can prove this is secure in the IND-CPA model under the DDH assumption. Given
a PPT IND-CPA adversary B such that

Prob[GameBIND-CPA(1λ) = 1] ≥ 1

2
+ α

for a nonnegligible α, we will construct a PPT algorithm A that can distinguish whether a tuple
〈h,G,H〉 is a DDH tuple or a random tuple.

Algorithm A(〈G, q, g〉, h,G,H):

1. 〈aux,M0,M1〉 ← B(play, pk, h) where pk = 〈〈G, q, g〉, h〉

2. b
r←− {0, 1}

3. c← 〈G,H ·Mb〉

4. b∗ ← B(guess, aux, c)

5. If b = b∗ output 1; otherwise 0.

Figure 21 illustrates how A uses the attacker B to break the DDH assumption.
We will first examine how A works in the case where it receives a DDH tuple. It is clear to

see that in that case, G,H ·Mb is indeed a valid ElGamal ciphertext with regard to public key
h and message Mb. We thus expect B to produce the correct value of b with good probability.

Let v = 〈〈G, q, g〉, gx, gy, gxy〉 be the DDH tuple. Then

Prob
v←〈〈G,q,g〉,gx,gy,gxy〉

[A(v) = 1] = Prob[GameBIND-CPA(1λ) = 1] ≥ 1

2
+ α.

Now, we examine the case where A receives a random tuple instead. If v contains a random
tuple, v = 〈〈G, q, g〉, gx, gy, gz〉. This will produce a ciphertext with somewhat unpredictable
structure (and in most cases, one that does not decrypt to M0 or Mb). As such, the behaviour
of B can be unpredictable as well. The key point that we will establish is that B behaves the
same regardless of b. We do not need to make any other claims about its behaviour, as that is
enough to prove that b and b∗ match with probability exactly 1/2.

For any w ∈ 〈g〉, we can find a unique z0 such that w = gz0Mb or z0 = logg(w/Mb) as well
as a unique z1 such that w = gz1Mb i.e. z1 = logg(w/Mb). Therefore no information about b is
passed to the adversary. Since b∗ is independent of the choice of b, the likelihood that b = b∗ is
1/2.

Prob
v←〈〈G,q,g〉,gx,gy,gz〉

[A(v) = 1] = Prob[b = b∗] =
1

2
.
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Figure 21: If an attacker B decodes a message in ElGamal with a nonnegligible probability, we
can construct a PPT distinguisher A that breaks the DDH assumption. If b = b∗, A is successful.

Based on this,∣∣∣∣ Prob
v←〈〈G,q,g〉,gx,gy,gxy〉

[A(v) = 1] − Prob
v←〈〈G,q,g〉,gx,gy,gz〉

[A(v) = 1]

∣∣∣∣ ≥ α.
Because α is nonnegligible, this violates the DDH assumption as desired.

10 Structuring Security Proofs as Sequences of Games

We now change gears to look at how we can structure security proofs as sequences of games.
These games are best understood if read in parallel with the proofs in the subsequent sections.

10.1 Game Basics

Lemma 10.1.1. For any I ⊆ N, let {ai}i∈I , {bi}i∈I , {ci}i∈I be sequences of real numbers such
that

∑
i∈I bi =

∑
i∈I ci = 1 for all i ∈ I ⊆ N. Then for all 0 ≤ ai ≤ 1, it holds that∣∣∣∣∣∑

i∈I
ai(bi − ci)

∣∣∣∣∣ ≤ 1

2

∑
i∈I
|bi − ci| .

Definition 10.1.1. Let G be a deterministic program that takes λ-bit inputs and terminates
after v steps. At each step, G employs a random variable ρi sampled uniformly from the domain
Ri. Each space Ri is parameterized by the λ-bit input and may depend on previous variables:

Ri = {0, 1}si(λ) for si : N −→ N and 1 ≤ i ≤ v. The ith step of G has the form

y ← f(y1, . . . , yd, ρ1, . . . , ρi); ρi
r←− Ry1,...,ydi

where y is a variable, y1, . . . , yd are variables from the i− 1 step of G, and f is a deterministic
polynomial-time computable function.

In addition to the v steps, G may contain other deterministic instructions. For example, G
may employ conditional statements (if-then-else) and for-loops that cause a sequence of steps
to repeat. In such instances, each repetition is counted as an additional step. No matter which
statements G contains, the program structure can be depicted in a straight-line or tree-structure
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(based on the conditionals) sequence of assignments and function calls. We assume that the
program returns a single bit as an outcome.

We call G a game and define T to be the winning event G outputs 1. (The probability space
is comprised of all variables 〈ρ1, . . . , ρv〉).

Example. Let PRIME be a probabilistic procedure that takes 1λ as an input, uses coin tosses
in Coins, and returns a λ-bit prime as an output.

Game G0 on Input 1λ Random Variables

1. p← PRIME(1λ, ρ) ρ
r←− Coins

2. x←
∑λ−1
i=0 2iρi+1 ρ1, . . . , ρλ

r←− {0, 1}
3. output the least significant bit of x mod p

10.2 The First Game-Playing Lemma

This first lemma allows us to connect the winning probabilities of two games that proceed iden-
tically unless a certain failure event happens. This lemma is used extensively in the existing
literature employing games as a means to structure proofs. In our framework, we use Lemma
10.2.1 similar to [2]. That is, we refrain from using any special syntactical conditions and take
into account the special syntax properties of the underlying game program.

Lemma 10.2.1. (First Game-Playing Lemma). Consider two games, G and G′ defined
over the same random variables ρ1, . . . , ρv in R1, . . . , Rv. If Prob[T ∩ ¬F ] = Prob[T ′ ∩ ¬F ] for
some event F , then |Prob[T ]− Prob[T ′]| ≤ Prob[F ].

Proof. It holds that

Prob[T ] = Prob[T ∩ F ] + Prob[T ∩ ¬F ]

Prob[T ′] = Prob[T ′ ∩ F ] + Prob[T ′ ∩ ¬F ].

So by our assumption,

Prob[T ] = Prob[T ∩ F ] + Prob[T ′ ∩ ¬F ].

It follows then that

|Prob[T ]− Prob[T ′]| ≤ |Prob[T ∩ F ]− Prob[T ′ ∩ F ]| .

Since the maximum distance between the probabilities on the right-hand side is Prob[F ], the
result follows immediately.

Example. Suppose we add another step to game G0 to obtain game G′0.

Game G′0 on Input 1λ Random Variables

1. p← PRIME(1λ, ρ) ρ
r←− Coins

2. x←
∑λ−1
i=0 2iρi+1 ρ1, . . . , ρλ

r←− {0, 1}
3. if x < 2bλ/2c then x← 2x− p
4. output the least significant bit of x mod p

Note that both games are defined over the same probability space; moreover, if F is the
event x < 2bλ/2c, then the events T0 ∩ ¬F and T ′0 ∩ ¬F are identical. Using the first game-
playing lemma, we have that |Prob[T0]− Prob[T ′0]| ≤ Prob[F ]. It is then easy to verify that
Prob[F ] ≤ 2bλ/2c.
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10.3 The Second Game-Playing Lemma

The second game-playing lemma is a fundamental tool which we use pervasively in the following
proofs. It is considered to be the basic “glue” in structuring proofs as sequences of games in our
framework.

Definition 10.3.1. Suppose G is a game and the variables y1, . . . , yd are defined in G’s syntactic
description up to the ith step. Let ỹ1, . . . , ỹd be values in the respective domains of y1, . . . , yd.
Let K be the event ∧di=1(yi = ỹi) and suppose K is a nonzero probability event in the probability
space over which the game is defined. Define the conditioned game G[K] to be the game whose
syntactic description is derived from that of G as follows:

1. The first i steps of G are omitted in G[K].

2. All occurrences of the variables y1, . . . , yd are substituted by ỹ1, . . . , ỹd.

3. An initial dummy step is added to G[K] that draws the random variables ρ1, . . . , ρi from
their respective spaces following their respective distributions conditioned on the event K.

Example. Consider the following game where PRIME is defined as before and f1, f2 are two
polynomial-time functions. The range of f1(p, ·) is Z∗p and the range of f2 is {0, 1}.

Game G1 on Input 1λ Random Variables

1. p← PRIME(1λ, ρ) ρ
r←− Coins

2. x← b+ at mod p a
r←− [p], t

r←− [p− 1], b
r←− {0, 1}

3. c← f1(p, x; ρ1) ρ1
r←− Coins1

4. y ← c+ t mod p

5. b∗ ← f2(p, y; ρ2) ρ2
r←− Coins2

6. if b = b∗ output 1

We use [m] to denote the set {1, . . . ,m} for m ∈ N.
Now suppose p0 is a prime in the range of PRIME, x0 ∈ Zp, c0 ∈ Z∗p, and y0 ∈ Zp − {c0}.

We will condition the game G1 up to Step 4 based on these values. The conditioned game
G2 = G1[p = p0, x = x0, c = c0, y = y0] is:

Game G2 on Input 1λ Random Variables

1. 〈a, t, b〉 r←− Rp0,x0,y0

2. b∗ ← f2(p0, y0; ρ2) ρ2
r←− Coins2

3. if b = b∗ output 1

The randomness space Rp0,x0,y0 contains the two triples 〈x0(y0− c0)−1, y0− c0, 0〉 and 〈(x0−
1)(y0 − c0)−1, y0 − c0, 1〉.

Definition 10.3.2. Let G be a game. A game G′ is called derivable if it can be obtained from
G using any number of the following modifications.

1. G′ has the same description as G with one variable renamed.

2. Suppose ρ
r←− R is a random variable drawn in some step of G and f(ρ) is a constant c for

some function f . All occurrences of f(ρ) in G are substituted by c in G′.

3. Suppose 〈ρ1, ρ2〉
r←− R1 × R2 is one of the random variables drawn in some step of G so

that ρ1, ρ2 are independent and ρ2 is never used in G. G′ is obtained by G by substituting
〈ρ1, ρ2〉

r←− R1 ×R2 with ρ1
r←− R1.

4. Suppose a random variable ρ is drawn at Step i, but not used until Step j with j > i.
Then ρ can be drawn at any Step 1, . . . , j.

When G′ is derived from G, we write G
∗⇒ G′. Two games G1 and G2 are called joinable if

G1
∗⇒ G and G2

∗⇒ G for some game G.
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Proposition 10.3.1. If G and G′ are joinable, Prob[T ] = Prob[T ′].

The proof is simple and therefore omitted.

Example. Using Steps 3 and 4, we derive the following game from game G2.

Game G3 on Input 1λ ([p0, x0, c0, y0] are constants) Random Variables

1. b∗ ← f2(p0, y0; ρ2) ρ2
r←− Coins2

2. if b = b∗ output 1 b
r←− {0, 1}

We now proceed to the second game-playing lemma. This is a syntax-based lemma that
provides a substantial amount of freedom when modifying the steps in a game. Informally, the
second game playing lemma allows us to change an instruction y ← f(ρ) to another instruction
y′ ← f ′(ρ′). Inso doing we incur a distance bounded by the statistical distance of f and f ′ in the
winning probability of the two games. In addition, we can modify the probability distribution
of ρ′ and select it differently from the distribution of ρ. This requires some care due primarily
to the fact that the subsequent steps may depend on both y and the random variables used
when defining y. For this reason, a normalizing function norm is used in the modified game to
substitute in for any occurrence of ρ. The random variables ρ and norm(ρ) are assumed to be
identically distributed. The exact formulation of the lemma is as follows.

Lemma 10.3.1. (Second Game-Playing Lemma). Consider a game G that contains the
step

y ← f(y1, . . . , yd, ρ1, . . . , ρi); ρi
r←− Ry1,...,ydi .

Modify this step as follows to obtain the modified game G′:

y′ ← f ′(y1, . . . , yd, ρ1, . . . , ρi−1, ρ
′
i); t← norm(y1, . . . , yd, ρ1, . . . , ρi−1, ρ

′
i); ρ′i

r←− (Ry1,...,ydi )′.

The two games proceed identically after the ith step with every reference of y in game G substi-
tuted with y′ in game G′, and similarly for ρi substituted with t.9 Let K be any event that fixes
all variables in the first i− 1 steps of both G and G′. Let Dy be the range of f as it is induced
by the event K in game G and let Dy′ be the range of f ′ as it is induced by the event K in game
G′. Suppose that

1. For any such K and any y0 ∈ Dy ∩ Dy′ , the conditioned games G[K ∧ (y = y0)] and
G′[K ∧ (y′ = y0)] are joinable.

2. For any K, the statistical distance of the probability distribution of y and y′ over the
extended support set Dy ∪Dy′ conditioned on K is at most ε, where ε is a function in λ
(independent of the choice of K).

Given these two conditions, |Prob[T ]− Prob[T ′]| ≤ ε.
Proof. Let K be an event that fixes all variables in the first i−1 steps. Consider the ranges of the
variables y and y′, denoted by Dy and Dy′ respectively, which are induced by the properties of
the functions f and f ′ conditioned on the event K. Due to the equivalence of the two conditioned
games, we derive that

Prob[T | K ∧ (y = y0)] = Prob[T ′ | K ∧ (y′ = y0)].

Looking at Prob[T | K] and Prob[T ′ | K], we see

Prob[T | K] =
∑
y0∈Dy

Prob[T | K ∧ (y = y0)] · Prob[y = y0 | K]

=
∑

y0∈Dy\Dy′

Prob[T | K ∧ (y = y0)] · Prob[y = y0 | K] + . . .

. . .+
∑

y0∈Dy∩Dy′

Prob[T ′ | K ∧ (y′ = y0)] · Prob[y = y0 | K]

9It may not be necessary to substitute ρi with t. For example, we omit the instruction t ←
(y1, . . . , yd, ρ1, . . . , ρi−1, ρ

′
i) from the modified game when ρi does not occur in the game, when ρi and ρ′i are

identically distributed, and when ρ′i = 〈ρi, s〉 for any s.
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and

Prob[T ′ | K] =
∑

y0∈Dy′

Prob[T ′ | K ∧ (y′ = y0)] · Prob[y′ = y0 | K]

=
∑

y0∈Dy′\Dy

Prob[T ′ | K ∧ (y′ = y0)] · Prob[y′ = y0 | K] + . . .

. . .+
∑

y0∈Dy∩Dy′

Prob[T ′ | K ∧ (y′ = y0)] · Prob[y′ = y0 | K].

Note that Prob[y′ = y0 | K] = 0 if y0 ∈ Dy \Dy′ and Prob[y = y0 | K] = 0 if y0 ∈ Dy′ \Dy.
By subtracting the two probabilities we find

|Prob[T | K]− Prob[T ′ | K]| =

∣∣∣∣∣∣
∑

y0∈Dy∪Dy′

C(y0)(Prob[y = y0 | K]− Prob[y′ = y0 | K])

∣∣∣∣∣∣ ,
where the function C(y0) is defined by

C(y0) =

{
Prob[T ′ | K ∧ (y′ = y0)], if y0 ∈ Dy′

Prob[T | K ∧ (y = y0)], if y0 ∈ Dy \Dy′
.

For all y0 ∈ Dy ∪ Dy′ , it holds that 0 ≤ C(y0) ≤ 1. Using Lemma 10.1.1, we can then
conclude

|Prob[T | K]− Prob[T ′ | K]| ≤ 1

2

∑
y0∈Dy∪Dy′

|Prob[y = y0 | K]− Prob[y′ = y0 | K]| ≤ ε

Now

|Prob[T ]− Prob[T ′]| =

∣∣∣∣∣∑
K

Prob[T | K] · Prob[K]−
∑
K

Prob[T ′|K] · Prob[K]

∣∣∣∣∣
≤
∑
K

|Prob[T | K]− Prob[T ′ | K]| · Prob[K]

≤ ε
∑
K

Prob[K]

= ε.

as desired.

Example. We can alter the choice of y in Step 4 of game G1 to obtain G4.

Game G4 on Input 1λ Random Variables

1. p← PRIME(1λ, ρ) ρ
r←− Coins

2. x← b+ at mod p a
r←− [p], t

r←− [p− 1], b
r←− {0, 1}

3. c← f1(p, x; ρ1) ρ1
r←− Coins1

4. y ← Y Y
r←− [p]

5. b∗ ← f2(p, y; ρ2) ρ2
r←− Coins2

6. if b = b∗ output 1

Notice that in Games G1, G2, and G3, y contains information about b. By modifying Step 4,
we break the chain to b, so b∗ is now purely a random guess. We can use the second game-playing
lemma to show that the winning probabilities of G1 and G4 are still very close. To accomplish
this, we first consider G1 and G4 based on the conditioning p = p0, x = x0, c = c0, y = y0, where
p0 is a prime number, x0 ∈ Zp, c0 ∈ Z∗p, and y0 ∈ Zp − {c0}.
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Under this conditioning, game G1 is exactly game G2 and G4 produces the following game
G5.

Game G5 on Input 1λ ([p0, x0, c0, y0] are constants) Random Variables

1. 〈a, t, b〉 r←− Rp0,x0,y0

2. b∗ ← f2(p0, y0; ρ2) ρ2
r←− Coins2

3. if b = b∗ output 1

The space Rp0,x0,y0 contains triples of the form 〈(x0 − b)t−1, t, b〉, where t ∈ [p − 1] and
b ∈ {0, 1}. Since a and t are not used in G5, we can derive game G3 from game G5; thus G2 and
G5 are joinable.

Now consider the conditional probability distributions of the variable y in G2 and G5. By
conditioning on p0, x0, c0 in game G5, the variable y is uniformly distributed over [p0]. On the
other hand, the variable y equals c0 + t when conditioning on p0, x0, c0 in game G1 to get G2,
where t is selected from the conditional distribution 〈(x0−b)t−1, t, b〉 for t ∈ [p−1] and b ∈ {0, 1}.
Then all values of [p], except c0, are equally likely with probability 1/p − 1. This implies that
the statistical distance between G2 and G5.

1

2

[
(p− 1)

(
1

p− 1
− 1

p

)
+

1

p

]
=

1

p
≤ 2−λ+1.

The second game playing lemma gives |Prob[T1]− Prob[T4]| ≤ 2−λ+1.

10.4 The Third Game-Playing Lemma

Lemma 10.4.1. (Third Game-Playing Lemma). Let Dλ1 nd Dλ2 be two probability ensembles
with λ ∈ N, such that for all PPT A,∣∣∣Prob

~y
r←−Dλ1

[A(1λ, ~y) = 1]− Prob
~y

r←−Dλ2
[A(1λ, ~y) = 1]

∣∣∣ ≤ δ(λ).

If G1 and G2 are two otherwise identical games such that whenever a sequence of variables
~y = 〈y1, . . . , yd〉 is distributed according to Dλ1 in game G1, the same sequence of variables is
distributed according to Dλ2 in game G2; moreover, no random variable used in defining ~y is
(directly) employed anywhere else in the game, then |Prob[T1]− Prob[T2]| ≤ δ(λ).

Proof. Using the fact that G1 and G2 are identical except for the choice of ~y, we can build a
PPT distinguisher for Dλ1 ,Dλ2 that operates the same as the two games when given ~y, except
instead of sampling ~y according to the stated instructions, it employs its input vector ~y. This
distinguisher will behave either as game G1 (if ~y is drawn from Dλ1 ) or as game G2 (if ~y is drawn
from Dλ2 ). Note that it is critical to assume no game uses any random variable employed in the
choice of ~y to ensure the distinguisher’s design is independent of ~y.

Notation. For any PPT A with input of size λ, we assume A always uses p(λ) coin tosses, where
p is a fixed polynomial (dependent only on A). We write A(x; ρ) to simulate A deterministically

with the string ρ ∈ {0, 1}p(λ) as the coin tosses.

11 PRPs versus PRFs

Here we analyze the pseudorandom permutation/pseudorandom function (PRP/PRF) lemma
discussed in [3]. The essential idea of the proof is the same as in the previous examples (after
all, proofs are proofs and games are games), but the presentation of the proof is quite different
using the present methodology. We will invoke our second game-playing lemma instead of the
first.

Our goal is to show that for all PPT predicates A,∣∣Prob[Af (1λ) = 1]− Prob[Aπ(1λ) = 1]
∣∣ = negl(λ),
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where f is drawn at random from all functions {0, 1}λ −→ {0, 1}λ and π is drawn at random

from all permutations {0, 1}λ −→ {0, 1}λ.
Without loss of generality, assume: (1) A never makes the same oracle query twice and (2)

A always makes Q oracle queries, where Q is a function in λ. We are allowed to make these two
assumptions because without changing the functionality, we can transform any PPT predicate
not adhering to these facts into a predicate that does.

Let PERM be a procedure that produces a random permutation {0, 1}λ −→ {0, 1}λ on input
1λ. Suppose A is a PPT predicate as specified above that uses t(λ) coin tosses. Consider the
following game:

Game G1 on Input 1λ Random Variables

1. π ← PERM(1λ; ρ) ρ
r←− Coins

2. b← Aπ(1λ; ρ′) ρ′
r←− {0, 1}t(λ)

3. output b

The winning probability of game G1 equals Prob[Aπ(1λ) = 1]. Suppose A0, . . . ,AQ is a
sequence of PPT algorithms defined by A by splitting A into the Q+ 1 stages around its oracle
queries. This forms game G2.

Game G2 on Input 1λ Random Variables

1. π ← PERM(1λ, ρ) ρ
r←− Coins

2. 〈aux, i1〉 ← A0(1λ; ρ1) ρ1
r←− {0, 1}λ

3. for j = 1 to Q− 1
4. aj ← π(ij)

5. 〈aux, ij〉 ← Aj(1λ, aux, aj ; ρj) ρj
r←− {0, 1}λ

6. aQ ← π(iQ)

7. b← AQ(1λ, aux, aQ; ρQ) ρQ
r←− {0, 1}λ

8. output b

Instead of sampling the permutation in the first statement, we can construct the random
permutation “on the fly” using “lazy sampling” to modify G2. This produces game G3.

Game G3 on Input 1λ Random Variables

1. 〈aux, i1〉 ← A0(1λ; ρ1) ρ1
r←− {0, 1}λ

2. for j = 1 to Q− 1

3. aj ← vj vj
r←− Ra1...aj−1

λ

4. 〈aux, ij+1〉 ← Aj(1λ, aux, aj ; ρj) ρj
r←− {0, 1}λ

5. aQ ← v v
r←− Ra1,...,aQ−1

6. b← AQ(1λ, aux, aQ; ρQ) ρQ
r←− {0, 1}λ

7. output b

Note that Ra1...ak
λ = {0, 1}λ − {a1, . . . , ak}

Modification [3,j]. We modify the 3rd step during the jth execution of the for-loop so that it
reads like this (this actually requires splitting the single for-loop of G2 into two for-loops, but
we refrain from writing this):

3. aj ← vj vj
r←− {0, 1}λ

When conditioning on any choice of pairwise distinct a1, . . . , aj−1; any i1, . . . , ij ; and any
aux1, . . . , auxj , it holds that the probability distribution of aj in game G3,j is uniform over

{0, 1}λ. On the other hand, the probability distribution of aj in game G3,j−1 is uniform over

{0, 1}λ−{a1, . . . , aj−1}, i.e., each element will have probability 1/(2λ−j+1) of succeeding. The
statistical distance of the two conditional distributions is

1

2

[
(2λ − j + 1)

(
1

2λ − j + 1
− 1

2λ

)
+ (j − 1)

(
1

2λ

)]
=
j − 1

2λ
.
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Finally observe that the conditioned games G3,j−1 and G3,j are equivalent. As a result, we
can apply the second game playing lemma to obtain |Prob[T3,j−1]− Prob[T3,j ]| ≤ (j − 1)/2λ.
From this, we can deduce

|Prob[T3]− Prob[T3,Q]| ≤
Q∑
j=1

j − 1

2λ
=
Q(Q− 1)

2λ+1
.

Game G3,Q now has the form

Game G3,Q on Input 1λ Random Variables

1. 〈aux, i1〉 ← A0(1λ; ρ1) ρ1
r←− {0, 1}λ

2. for j = 1 to Q− 1

3. aj ← vj vj
r←− {0, 1}λ

4. 〈aux, ij+1〉 ← Aj(1λ, aux, aj ; ρj) ρj
r←− {0, 1}λ

5. aQ ← v v
r←− {0, 1}λ

6. b← AQ(1λ, aux, aQ; ρQ) ρQ
r←− {0, 1}λ

7. output b

Then game G3 can be “folded back” to game G4 with the identical operation:

Game G4 on Input 1λ Random Variables

1. f ← FUNC(1λ; ρ) ρ
r←− Coins

2. b← Af (1λ; ρ′) ρ′
r←− {0, 1}t(λ)

3. output b

FUNC is a procedure that samples a random function {0, 1}λ −→ {0, 1}λ. The winning
probability of G4 is exactly Prob[Af (1λ) = 1], where f is a random function {0, 1}λ −→ {0, 1}λ.
As a result, we obtain

∣∣Prob[Af (1λ) = 1]− Prob[Aπ(1λ) = 1]
∣∣ =

Q(Q− 1)

2λ+1
,

which is negligible in λ since Q is assumed to be polynomial in λ.

12 The Cramer-Shoup Cryptosystem

Now that we have the basic foundation for proving security based on sequences of games, we
want to prove that the Cramer-Shoup (CS) public-key cryptosystem is IND-CCA2 secure, where
we define CS later in Section 12.2.1. The adversarial goal, CCA2 stands for the chosen-ciphertext
attack with two rounds of decryption queries. Before proving IND-CCA2 security, we will prove
several weaker results on simpler cryptosystems in order to build up to CS.

12.1 Step 1: Proving IND-CPA Security

Let GGen check be a group generator that when given a coin toss ρ and length 1λ, it produces
〈p, q, g1〉 such that p is a λ-bit prime, q is an s(λ)-bit prime where s : N −→ N is a given function,
and g1 is an order q element in Z∗p. We assume s is selected so that 2−s(λ) is negligible in λ.

Assumption. When given a random instance of 〈p, q, g1〉 from GGen(1λ), the advantage AdvGGenDDH

of any PPT A is negligible in λ. That is, A can distinguish triples of the form 〈gx1 , g
y
1 , g

xy
1 〉 from

triples of the form 〈gx1 , g
y
1 , g

z
1〉 with negligible probability when x, y, z

r←− [q]. This is the Decisional
Diffie-Hellman assumption.
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12.1.1 The Two-Generator ElGamal Public-Key Cryptosystem

The two-generator variant of the ElGamal public-key encryption scheme is as follows:

Key-generation. For input 1λ, select a λ-bit prime p such that g1 is a prime order q element10,
where q divides p − 1 and q is s(λ) < λ bits. Select two random values w, z

r←− [q]. The public
key is 〈p, q, g1, g2, h〉, where g2 ← gw1 , h← gz11 g

z2
2 , and the secret key is z1, z2.

Encryption. The encryption function is given M ∈ 〈g1〉 (we are not concerned with how “real”

messages can be mapped to 〈g1〉), samples r
r←− [q], and returns 〈u1, u2, v〉 = 〈gr1, gr2, hrM〉.

Decryption. When given a ciphertext 〈u1, u2, v〉, the decryption function returns v/uz11 u
z2
2 mod

p.

The IND-CPA Game

Game G0 on Input 1λ Random Variables

1. 〈p, q, g1〉 ← GGen(1λ; ρ) ρ← Coins

2. g2 ← gw1 w
r←− [q]

3. h← gz11 g
z2
2 z1, z2

r←− [q]

4. 〈aux,M0,M1〉 ← A(stage1, g1, g2, h; ρ1) ρ1
r←− Coins1

5. u∗1 ← gr1; u∗2 ← gr2 r
r←− [q]

6. v∗ ← hrMb b
r←− {0, 1}

7. b∗ ← A(stage2, aux, u∗1, u
∗
2, v
∗; ρ2) ρ2

r←− Coins2
8. if b = b∗ return 1 else return 0

Proof of Security

We present the proof of security structured as a sequence of games.

Modification 1. We modify Step 6 of game G0 to obtain game G1.

6. v∗ ← (u∗1)z1(u∗2)z2Mb b
r←− {0, 1}

This is merely a syntactic modification since (u∗1)z1(u∗2)z2Mb = hrMb; thus, it follows imme-
diately that Prob[T0] = Prob[T1].

Modification 2. By modifying Step 5 of game G1, we obtain game G2.

5. u∗1 ← gr1; u∗2 ← gr
′

2 r
r←− [q], r′

r←− [q]

Note that the variables w, r, r′ are not explicitly used in either G1 or G2. Moreover, for any
group description 〈p, q, g1〉 produced by GGen, the triple 〈g2, u∗1, u∗2〉 is distributed as a DDH
triple in game G1 and as a random triple drawn from 〈g1〉 in game G2. It follows from the third
game-playing lemma that |Prob[T1]− Prob[T2]| ≤ AdvGGenDDH(λ).

Modification 3. We perform the following modification to game G2 to obtain game G3:

2. g2 ← gw1 w
r←− [q − 1]

Conditioned on any choice of p, q, g1, the statistical distance between the probability distri-
bution of [g2]2 and [g2]3 is 1/q; indeed, we have

1

2

[
(q − 1)

∣∣∣∣1q − 1

q − 1

∣∣∣∣+
1

q

]
=

1

q
≤ 1

2s(λ)−1
.

The variable w is used only through g2 in G2 and G3, so it is easy to verify that game G2,
when conditioned on any choice of p, q, g1 and [g2]2 = α, is equivalent to the conditioned game
G3 on the same p, q, g1 and [g2]3 = α. We conclude from the second game-playing lemma that
|Prob[T2]− Prob[T3]| ≤ 2−s(λ)+1.

10g1 is an element of a finite group of prime order q.
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Modification 4. We perform the following modification to game G3 to obtain game G4:

5. u∗1 ← gr1; u∗2 ← gr
′

2 〈r, r′〉 r←− ([q]× [q])6=

where ([q]× [q])6= is the set of all pairs of distinct elements of [q].
Suppose we condition on a choice of p, q, g1, g2, h, aux,M0,M1; call this event K. Then the

statistical distance of the distribution of [u∗1]4, [u
∗
2]4 and [u∗1]5, [u

∗
2]5 is less than or equal to

2−s(λ)+1. Define the event Kj for j ∈ {3, 4} as 〈[u∗1]j , [u
∗
2]j〉 = 〈α, α′〉 for some α, α′ such that

logg1 α 6= logg2 α
′, and consider the conditioned games G3[K ∧K3] and G4[K ∧K4]. One can

verify that these games are equivalent. It then follows from the second game playing lemma that
|Prob[T3]− Prob[T4]| ≤ 2−s(λ)+1.

Modification 5. Finally, we modify game G4 to obtain game G5 by altering Step 6.

6. v∗ ← gr
3

1 b
r←− {0, 1} , r3

r←− [q]

Condition on a fixed choice of all variables leading up to Step 6; that is, take K to be an event
that fixes p, q, g1, g2, h, aux,M0,M1, u

∗
1, u
∗
2. Note that fixing the variables u∗1, u

∗
2 implies that the

random coins r, r′ must also become fixed. This is not necessarily the case for all variables. For
example, z1, z2 are not fixed since conditioning on a fixed value of h does not force z1 or z2 to
become entirely fixed.

Take any α ∈ 〈g1〉. The probability distribution of [v∗]5 is clearly uniform over 〈g1〉 when
conditioned on K; therefore the event [v∗]5 = α will have probability 1/q, independent of b. Now
the event [v∗]4 = α suggests that two equations must be satisfied as is modeled by the following
system. The first equation is due to the conditioning on K.[

1 w
r wr′

] [
z1
z2

]
=

[
logg1 h

logg1(α/Mb)

]
(13)

The determinant of the system is w(r− r′) which, based on based on our conditioning, must
be nonzero. In other words, r = logg1 u

∗
1 and r′ = logg2 u

∗
2 and r 6= r′. The probability that

[v∗]4 = α must be 1/q there are exactly q choices for z1 and z2 under the conditioning of K, and
precisely one of them must be a solution to the above system. This is also independent of b.

Next we consider the equivalence of the two conditioned games G4 and G5 based on the
events K ∧ ([v∗]4 = α) and K ∧ ([v∗]5 = α) respectively. These games are now quite different.
In the conditioned game G5, the variables z1, z2 are subject only to the first equation in (13)
and b is a random bit. In the conditioned game G4, the distribution of z1, z2, b has exactly
two values determined by both equations in (13). One choice is for b = 0, and the other for
b = 1. Nevertheless, neither conditioned game employs z1, z2 through z = z1 + wz2 in any step
before Step 6, and of course, z is identical in both conditionings (equal to logg1 h). Moreover,
the distribution of b is identical in both conditioned games; specifically, it is uniform over {0, 1}.
From these two facts, we are able to derive that the two conditioned games are equivalent. As
a result, we can apply the second game playing lemma to obtain Prob[T4] = Prob[T5].

Closing argument. Through the previous series of modifications, it is now clear that Prob[T5] =
1/2 (b is never used before Step 8). To conclude the proof, note that the sequence of games
reveals ∣∣∣∣Prob[T0]− 1

2

∣∣∣∣ ≤ AdvGGenDDH(λ) + 2−s(λ)+3.

Since both 2−s(λ) and AdvGGenDDH(λ) are assumed to be negligible in λ, this is also negligible in λ.
This proves the following theorem:

Theorem 12.1.1. The two-generator ElGamal public-key cryptosystem satisfies IND-CPA secu-
rity under the Decisional Diffie-Hellman assumption.
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12.2 Step 2: The IND-CCA1 Version, “Lunch-Time Attacks”

As before, we will use GGen as the group generator that takes coin tosses ρ and length 1λ to
produce p, q and g1, where p is a λ-bit prime, q is an s(λ)-bit prime for a predetermined function
s : N −→ N, and g1 is an order q element in Z∗p. Note that we assume that s is selected so that

2−s(λ) is negligible in λ. We will employ the Decisional Diffie-Hellman assumption as defined in
Section 12.1.

12.2.1 The CCA1-CS Public-Key Cryptosystem

We now present a CCA1-variant of the Cramer-Shoup public-key encryption scheme.

Key-generation. For input 1λ, select a λ-bit prime p such that g1 is a prime order q element for
a q dividing p− 1, and q is of s(λ) < λ bits. Four random values are selected, w, z, x1, x2

r←− [q].
The public key is 〈p, q, g1, g2, h, c〉 where g1 ← gw1 , h ← gz11 g

z2
2 , c ← gx1

1 gx2
2 . The secret key is

z1, z2, x1, x2.

Encryption. When given M ∈ 〈g1〉, the encryption function samples r
r←− [q] and returns

〈u1, u2, v, e〉 = 〈gr1, gr2, hrm, cr〉.

Decryption. The decryption function is given a ciphertext 〈u1, u2, v, e〉 and tests if e = ux1
1 u

x2
2 .

If the test passes, the function returns v/uz11 u
z2
2 mod p, otherwise it returns ⊥.

The IND-CCA1 Game
The adversarial goal, CCA1 stands for the chosen-ciphertext attack with one round of decryp-

tion queries. An IND-CCA1 attack gets its nickname, the the lunch-time attack for allowing
the scenario where an internal employee, with knowledge of a system, can break into someones
computer over their lunch break.

Game G0 on Input 1λ Random Variables

1. 〈p, q, g1〉 ← GGen(1λ; ρ) ρ← Coins

2. g2 ← gw1 w
r←− [q]

3. c← gx1
1 gx2

2

4. h← gz11 g
z2
2 z1, z2

r←− [q]

5. 〈aux,M0,M1〉 ← ADec(·)[Q](stage1, g1, g2, c, h; ρ1) ρ1
r←− Coins1

6. u∗1 ← gr1; u∗2 ← gr2 r
r←− [q]

7. v∗ ← hrMb; e∗ ← cr b
r←− {0, 1}

8. b∗ ← A(stage2, u
∗
1, u
∗
2, v
∗, e∗; ρ2) ρ2

r←− Coins2
9. if b = b∗ return 1 else return 0

During Step 5, the decryption oracle Dec(·) is queried Q times. When given a ciphertext
〈u1, u2, v, e〉, it tests if e = ux1

1 u
x2
2 . If and when the test passes, the decryption oracle returns

v/uz11 u
z2
2 ; otherwise ⊥ is returned.

Proof of Security

We present the proof of security structured as a sequence of games.

Modification 1. We perform the following modification to game G0 to obtain game G1:

7. v∗ ← (u∗1)z1(u∗2)z2Mb; e∗ ← (u∗1)x1(u∗2)x2 b
r←− {0, 1}

This is again a syntactic modification since (u∗1)z1(u∗2)z2Mb = hrMb and (u∗1)x1(u∗2)x2 = cr.
It directly follows that Prob[T0] = Prob[T1].

Modification 2. Modify Step 6 of G1 to obtain game G2.

6. u∗1 ← gr1; u∗2 ← gr
′

2 r, r′
r←− [q]
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Note that the variables w, r, r′ are not explicitly used anywhere in either game G1 or G2.
Moreover, for any group description 〈p, q, g1〉 produced by GGen, the triple 〈g2, u∗1, u∗2〉 is dis-
tributed as a DDH triple in game G1, and as a random triple drawn from 〈g1〉 in game G2. By
the third game-playing lemma, |Prob[T1]− Prob[T2]| ≤ AdvGGenDDH(λ).

Modification 3. Modify game G2 to obtain game G3 by

2. g2 ← gw1 w
r←− [q − 1]

Conditioned on any choice of p, q, g1, the statistical distance between the probability distri-
bution of [g2]2 and [g2]3 is 1/q. Indeed,

1

2

[
(q − 1)

∣∣∣∣1q − 1

q − 1

∣∣∣∣+
1

q

]
=

1

q
≤ 1

2s(λ)−1
.

The variable w is used only through g2 in games G2, G3, so one can verify that conditioned
on a choice of p, q, g1, and [g2]2 = α, the conditioned game G2 is equivalent to game G3 when
conditioned on the same choice of p, q, g1, and [g2]3 = α. From the second game-playing lemma
then, |Prob[T2]− Prob[T3]| ≤ 2−s(λ)+1.

Modification [4,i] where i = 1, . . . , Q. We modify the answer to the ith query to the decryp-
tion oracle in Step 5 so that it operates as follows:

Set the variables
z ← z1 + wz2; x← x1 + wx2

Given a ciphertext 〈u1, u2, v, e〉, test if u2 = uw1 and e = ux1 . If both tests pass, return
the value v/uz1; otherwise return ⊥.

Games G4,i and G4,i−1 are clearly defined over an identical probability space (we assume
G4,0 = G3). Consider the event F over this joint probability space that the adversary produces
a ciphertext as its ith query that the two oracles answer differently. If a ciphertext 〈u1, u2, v, e〉
passes the test of game G4,i, the answer must be the same; specifically, u2 = uw1 implies e =
ux1 = ux1

1 u
x2
2 , so the ciphertext also passes the test of game G4,i−1. The answer of game G4,i is

then v/uz1, which equals v/uz11 u
z2
2 . If the ciphertext fails both tests, then the answers are again

identical.
The only interesting case is then when the ith query passes the test performed in game

G4,i−1, but fails the test of game G4,i. This implies that e = ux1
1 u

x2
2 , while either u2 6= uw1 or

e 6= ux1 . Note that if u2 = uw1 , it would mandate that e = ux1 . We can therefore conclude that if
F occurs, u2 6= uw1 and the corresponding ciphertext passes the test of game G4,i−1.

Notice that whenever the event ¬F occurs, the two games proceed identically: when con-
ditioning on the event ¬F , the two games are identical. It follows from the first-game playing
lemma that |Prob[T4,i−1]− Prob[T4,i]| ≤ Prob[F ]. We have now found a bound on Prob[F ]. Let
us condition on a fixed choice of p, q, g1, g2, c and suppose F happens. Then in the ith query, A
outputs u1, u2, e with logg1 u1 6= logg2 u2 and e = ux1

1 u
x2
2 . Note that for the first i − 1 queries,

the random coin tosses x1, x2 in the view of A must satisfy the first equation in the system[
1 w

logg1 u1 w logg2 u2

] [
x1
x2

]
=

[
x

logg1 e

]
.

This follows from the fact that all queries made by the adversary prior to posing its ith query
are answered by employing x instead of x1, x2. This system has a full-rank minor with nonzero
determinant w(logg2 u2 − logg1 u1); thus, the event F occurs with probability 1/q ≤ 2−s(λ)+1,

conditioned on the choice of p, q, g1, g2, c. Then Prob[F ] ≤ 2−s(λ)+1.

Modification 5. We now modify game G4 = G4,Q to obtain game G5:

6. u∗1 ← gr1; u∗2 ← gr
′

2 〈r, r′〉 r←− ([q]× [q])6=
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It is easy to see that conditioning on p, q, g1, g2, c, h, aux,M0,M1 the statistical distance of
the distribution of [u∗1]4, [u

∗
2]4 and [u∗1]5, [u

∗
2]5 is less than or equal to 2−s(λ)+1.

Let us now condition on some choice of p, q, g1, g2, c, h, aux,M0,M1 and call this the event
K. Consider the event Kj for j ∈ {4, 5}, defined as 〈[u∗1]j , [u

∗
2]j〉 = 〈α, α′〉 for some α, α′ with

logg1 α 6= logg2 α
′. We consider now the conditioned games G4[K ∧K4] and G5[K ∧K5]. It is

easy to verify that the two conditioned games are equivalent. It follows from the second game
playing lemma that |Prob[T4,Q]− Prob[T5]| ≤ 2−s(λ)+1.

Modification 6. Lastly, we modify Step 7 of game G5 to obtain game G6.

7. v∗ ← gr
′′

1 ; e∗ ← (u∗1)x1(u∗2)x2 b
r←− {0, 1}, r′′ r←− [q]

Consider an event K that fixes p, q, g1, g2, h, aux,M0,M1, u
∗
1, u
∗
2. In fixing the variables u∗1, u

∗
2,

the random coins r, r′ must also become fixed. This is not the case for z1, z2 since conditioning
on a fixed value of h does not force z1, z2 to become entirely fixed.

Now take an α ∈ 〈g1〉. The probability distribution of [v∗]6 is clearly uniform over 〈g1〉
conditioned on K; therefore, the event [v∗]6 = α has probability 1/q, which is independent of b.
In looking at the event [v∗]5 = α, we see that the following system must be satisfied where the
first equation is due to the conditioning on K:[

1 w
r wr′

] [
z1
z2

]
=

[
logg1 h

logg1(α/Mb)

]
. (14)

The determinant of the system is w(r′− r) and, based on our conditioning, must be nonzero
(r = logg1 u

∗
1 and r′ = logg2 u

∗
2; moreover, r 6= r′). It then follows that the probability of

the event [v∗]5 = α must be 1/q since there are exactly q choices for selecting z1, z2 under the
conditioning of K and precisely one of them will be the solution to (14). This is also independent
of the choice of b.

Next we have to consider the equivalence of the two conditioned games G5 and G6 based on
the events K ∧ ([v∗]5 = α) and K ∧ ([v∗]6 = α) respectively. The two conditioned games are
now quite different. Indeed, in the conditioned game G6, the variables z1, z2 are subject only to
the first equation in (14) and b is left as a random bit. In the conditioned game G5, the random
variables z1, z2, and b do not follow the same distribution. Here the variables are subject to
both equations in (14), so their distribution has exactly two possible values, one for b = 0 and
one for b = 1. Nevertheless, both games only employ z1, z2 through z = z1 + wz2 after Step 7,
and of course, z is identical in both conditionings (equal to logg1 h). The distribution of b is also
identical in both conditioned games; it is uniform over {0, 1}. Together, these facts imply that
the two conditioned games are equivalent. As a result, we can apply the second game playing
lemma to obtain Prob[T5] = Prob[T6].

Closing argument. It is now clear that Prob[T6] = 1/2 since b is not used before Step 9. In
conclusion, ∣∣∣∣Prob[T0]− 1

2

∣∣∣∣ ≤ AdvGGenDDH(λ) + (Q+ 2)2−s(λ)+1.

This is negligible in λ since Q is polynomial bounded in λ and AdvGGenDDH(λ) is assumed to be
negligible in λ. This proves the following theorem:

Theorem 12.2.1. The CCA1-CS public-key cryptosystem satisfies IND-CCA1 (lunch-time at-
tack) security under the decisional Diffie-Hellman assumption.

12.3 Step 3: The IND-CCA2 Version

Let GGen be a group generator that takes coin tosses ρ and length 1λ and produces p, q and g1
such that p is a λ-bit prime, q is an s(λ)-bit prime for a predetermined function s : N −→ N, and
g1 is an order q element from Z∗p. We will assume that s is selected so that 2−s(λ) is negligible
in λ.

Assumption 1. Our first assumption is the decisional Diffie-Hellman assumption as defined in
Section 12.1.
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Assumption 2. There is a family UOWHF(p, q, g1) of functions 〈g1〉×〈g1〉×〈g1〉 −→ Zq, where
〈p, q, g1〉 is drawn from GGen(1λ) so that the function

AdvGGenUOWHF(λ) = max
A
{Prob[A(x, descH) = x′) ∧ (x 6= x′) ∧ (H(x) = H(x′))]}

is negligible in λ. The maximum is taken over all PPT A and the probability is taken over all
choices of 〈p, q, g1〉 from GGen(1λ), H from UOWHF(p, q, g1), and x from 〈g1〉 × 〈g1〉 × 〈g1〉. The
string descH is a circuit describing the function H.

12.3.1 The CS Public-Key Cryptosystem

The Cramer-Shoup (CS) public-key encryption scheme is as follows:

Key-generation. For input 1λ, select a λ-bit prime p such that g1 is a prime order q element,
q divides p − 1, and q is of s(λ) < λ bits. Select six random values, w, z, x1, x2, y1, y2

r←− [q].
Sample a universal one-way hash function H from UOWHF(1λ) : 〈g1〉 × 〈g1〉 × 〈g1〉 −→ Zq. The
public key is 〈p, q, g1, g2, h, c, d,descH〉 where g2 ← gw1 , h← gz11 g

z2
2 , c← gx1

1 gx2
2 , d← gy11 g

y2
2 . The

secret key is z1, z2, x1, x2, y1, y2.

Encryption. The encryption function takes a value M ∈ 〈g1〉, samples r
r←− [q], and returns

〈u1, u2, v, e〉 = 〈gr1, gr2, hrM, crdhr〉 where h← H(u1, u2, v).

Decryption. When given a ciphertext 〈u1, u2, v, e〉, the decryption function computes h ←
H(u1, u2, v) and tests if e = ux1+y2h

1 ux2+y2h
2 . If the test passes, it returns v/uz11 u

z2
2 mod p;

otherwise it returns ⊥.

The IND-CCA2 Game. IND-CCA2 now allows an adversary to make two rounds of decryption
queries in a chosen-ciphertext attack.

Game G0 on Input 1λ Random variables

1. 〈p, q, g1〉 ← GGen(1λ; ρ) ρ← Coins
2. H ← UOWHF(1λ, ρ′) ρ′ ← Coins′

3. g2 ← gw1 w
r←− [q]

4. c← gx1
1 gx2

2 ; d← gy11 g
y2
2 x1, x2, y1, y2

r←− [q]

5. h← gz11 g
z2
2 z1, z2

r←− [q]

6. 〈aux,M0,M1〉 ← ADec(·)[Q1](stage1, g1, g2, c, d, h; ρ1) ρ1
r←− Coins1

7. u∗1 ← gr1; u∗2 ← gr2 r
r←− [q]

8. v∗ ← hrMb; e∗ ← crdrH(u∗1 ,u
∗
2 ,v
∗) b

r←− {0, 1}
9. b∗ ← ADec′(·)[Q2](stage2, u

∗
1, u
∗
2, v
∗, e∗; ρ2) ρ2

r←− Coins2
10. if b = b∗ return 1 else return 0

The decryption oracle Dec(·) is queried Q1 times during Step 6 and Dec′(·) is queried Q2 times
in Step 9. The operation of Dec(·) is defined below.

Given a ciphertext 〈u1, u2, v, e〉, test if e = ux1+y1h
1 ux1+y2h

2 where h = H(u1, u2, v). If
the test passes, return the value v/uz11 u

z2
2 ; otherwise return ⊥.

Dec′ is similarly defined with the restriction that the challenge ciphertext 〈u∗1, u∗2, v∗, e∗〉
results immediately in ⊥.

Proof of Security

We present the proof of security structured as a sequence of games.

Modification 1. Alter Step 8 of game G0 to obtain game G1.

8. v∗ ← (u∗1)z1(u∗2)z2Mb; e∗ ← (u∗1)x1+y1h(u∗2)x2+y2h; b
r←− {0, 1}

h← H(u∗1, u
∗
2, v
∗)
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As with the first modification in the previous two security proofs, this is used to provide
a useful syntactic adjustment without altering the probability distributions. This follows from
the fact that (u∗1)z1(u∗2)z2Mb = hrMb , (u∗1)x1(u∗2)x2 = cr, and (u∗1)y1(u∗2)y2 = dr. Therefore,
Prob[T0] = Prob[T1].

Modification 2. Perform the following modification on game G1 to obtain game G2:

7. u∗1 ← gr1; u∗2 ← gr
′

2 r, r′
r←− [q]

Observe that the variables w, r, r′ are not explicitly used anywhere in G1 or G2. Moreover,
for any group description 〈p, q, g1〉 that GGen produces, the triple 〈g2, u∗1, u∗2〉 is distributed as a
DDH triple in game G1 and as a random triple drawn from 〈g1〉 in game G2. It follows from the
third game-playing lemma that |Prob[T1]− Prob[T2]| ≤ AdvGGenDDH(λ).

Modification 3. Modify game G2 as follows to obtain game G3:

2. g2 ← gw1 w
r←− [q − 1]

Conditioned on any choice of p, q, g1,H, the statistical distance between the probability
distribution of [g2]2 and [g2]3 is 1/q; indeed, we have

1

2

[
(q − 1)

∣∣∣∣1q − 1

q − 1

∣∣∣∣+
1

q

]
=

1

q
≤ 1

2s(λ)−1
.

The variable w is only used through g2 in G2 and G3, so it is easy to verify that when con-
ditioned on any choice of p, q, g1,H and [g2]2 = α, the conditioned game G2 is equivalent to
the conditioned game G3 on the same p, q, g1,H and [g2]3 = α. We conclude from the second
game-playing lemma that |Prob[T2]− Prob[T3]| ≤ 2−s(λ)+1.

Modification [4,i] where i = 1, . . . , Q1. Modify the answer to the ith query to the decryption
oracle in Step 6.

Set the variables

z ← z1 + wz2; x← x1 + wx2; y ← y1 + wy2

Given a ciphertext 〈u1, u2, v, e〉, test if u2 = uw1 and e = ux+yh1 , where h = H(u1, u2, v).
If both tests pass, return the value v/uz1; otherwise return ⊥.

ClearlyG4,i andG4,i−1 are defined over an identical probability space (we assumeG4,0 = G3).
Consider the event F over this joint probability space that the adversary produces a ciphertext
as its ith query so that the answer of the two oracles is different on this ciphertext.

If a ciphertext 〈u1, u2, v, e〉 passes the test of game G4,i, the answer must be the same in

G4,i−1. Specifically, we have that u2 = uw1 , so e = ux+yh1 = ux1+y1h
1 ux2+y2h

2 ; that is, the
ciphertext also passes the test of game G4,i−1. The answer of game G4,i equals v/uz1, which is
equal to v/uz11 u

z2
2 . On the other hand, if the ciphertext fails both tests, the answers are identical

in G4,i and G4,i−1.
The only interesting case is then when the ith query passes the test performed in game

G4,i−1, but fails the test of game G4,i. Recall that in this case e = ux1+y1h
1 ux2+y2h

2 , while either

u2 6= uw1 or e 6= ux+yh1 . Note that we cannot have u2 = uw1 since this implies e = ux+yh1 . If
the event F occurs, we can assume u2 6= uw1 and the corresponding ciphertext passes the test of
game G4,i−1.

Whenever the event ¬F happens, the two games proceed identically (i.e., when conditioning
on the event ¬F , the two games are identical). It follows from the first-game playing lemma
that

|Prob[T4,i−1]− Prob[T4,i]| ≤ Prob[F ].

Thus we have found a bound on Prob[F ]. Fix a choice of p, q, g1, g2, c, d and suppose F occurs.

Then in the ith query, A outputs u1, u2, e with logg1 u1 6= logg2 u2 and e = ux1+y1h
1 ux2+y2h

2 .
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Observe now that the random coin tosses x1, x2, y1, y2, in the view of A up until the ith query,
must satisfy the first two equations of 1 w 0 0

0 0 1 w
logg1 u1 w logg2 u2 h logg1 u1 wh logg2 u2



x1
x2
y1
y2

 =

 x
y

logg1 e

 (15)

This follows from the fact that all queries made by the adversary prior to posing its ith query
are answered using x and y, not x1, x2, y1, y2. The ith query itself forms the third equation of
(15).

This system has a full-rank minor with nonzero determinant w(logg1 u1− logg2 u2); thus, the

event F occurs with probability 1/q ≤ 2−s(λ)+1 conditioned on the choice of p, q, g1, g2, c, d. It
follows that Prob[F ] ≤ 2−s(λ)+1.

Modification 5. Continuing with our notation from Modification 4 in Section 12.1, modify
G4 = G4,Q2 to obtain game G5.

7. u∗1 ← gr1; u∗2 ← gr
′

2 〈r, r′〉 r←− ([q]× [q])6=

If we condition on p, q, g1,H, g2, c, d, h, aux,M0,M1, the statistical distance of the distribution
of [u∗1]4, [u

∗
2]4 and [u∗1]5, [u

∗
2]5 is less than or equal to 2−s(λ)+1. Suppose we condition on some

choice of p, q, g1,H, g2, c, d, h, aux,M0,M1; call this the event K and define Kj for j ∈ {4, 5} as
the event 〈[u∗1]j , [u

∗
2]j〉 = 〈α, α′〉 for some α, α′ with logg1 α 6= logg2 α

′. Then the the conditioned
games G4[K∧K4] and G5[K∧K5] are equivalent. By the second game playing lemma, |Prob[T4]−
Prob[T5]| ≤ 2−s(λ)+1.

Modification 6. Modify the operation of the decryption oracle Dec′(·) in Step 9 to form G6.

Set the variables

z ← z1 + wz2; x← x1 + wx2; y ← y1 + wy2.

Given a ciphertext 〈u1, u2, v, e〉, test if u2 = uw1 and e = ux+yh1 , where h = H(u1, u2, v).
If both tests pass, return v/uz1; otherwise return ⊥.

Define F to be the event that the oracle responds different in some query of the second stage
of the adversary. Games G5 and G6 are defined over the same probability space. Since G5 and
G6 proceed identically as long as ¬F occurs, |Prob[T6] − Prob[T5]| ≤ Prob[F ] by the first game
playing lemma.

If F6 occurs, the adversary produces a ciphertext 〈u1, u2, v, e〉 in his second stage such that

e = ux1+y1h
1 ux2+y2h

2 , but logg1 u1 6= logg2 u2 by the same reasoning as in G4,i. Define Coll to be
the event that the adversary produces a ciphertext 〈u1, u2, v, e〉 during his second stage so that
〈u1, u2, v, e〉 6= 〈u∗1, u∗2, v∗, e∗〉, but H(u1, u2, v) = H(u∗1, u

∗
2, v
∗) (i.e., a collision for H).

We will investigate the event ¬Coll ∩ F . Note that F = F1 ∪ . . . ∪ FQ2
, where Fi denotes

the event that the adversary produces a ciphertext in its ith query for which the condition of F
holds. Using this, we will first place a bound on the probability ¬Coll∩Prob[Fi], and then apply
the union bound to obtain an upper bound for the probability ¬Coll ∩ F . Let us condition over
p, q, g1,H, g2, c, d, h, aux,M0,M1, u

∗
1, u
∗
2, v
∗, e∗. Suppose that prior to the adversary making his

ith query in stage2, the values x1, x2, y1, y2 satisfy the first three of the equations of the following
system in the view of the adversary.

1 w 0 0
0 0 1 w
r wr′ h∗r wh∗r′

logg1 u1 w logg2 u2 h logg1 u1 wh logg2 u2



x1
x2
y1
y2

 =


x
y

logg1 e
∗

logg1 e

 .
The adversary’s ith query yields the fourth equation in the above system. The determinant

is w2(r− r′)(h− h∗)(logg1 u1 − logg2 u2), which is nonzero since we assume ¬Coll. Before his ith
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query in Step 9, the adversary cannot obtain any information regarding x1, x2, y1, y2, beyond
what is contained in the first three equations; therefore Prob[Fi ∩ ¬Coll] ≤ 1/q. In general,
Prob[Fi ∩ ¬Coll] ≤ 2−s(λ)+1. It follows then that

Prob[¬Coll ∩ F ] ≤ Q2 · 2−s(λ)+1.

Finally, using the fact that

Prob[F ] = Prob[¬Coll ∩ F ] + Prob[Coll ∩ F ] ≤ Prob[¬Coll ∩ F ] + Prob[Coll],

we obtain the result

|Prob[T6]− Prob[T5]| ≤ Q2 · 2−s(λ)+1 + Prob[Coll].

We still need a bound on Prob[Coll], which we will find in the next game.

Modification 7. Alter Step 8 of game G6 to obtain the game G7.

8. v∗ ← gr31 ; e∗ ← (u∗1)x1(u∗2)x2 b
r←− {0, 1}, r3

r←− [q]

Let us condition on a fixed choice of all variables prior to Step 7: i.e., we consider an event
K that fixes p, q, g1,H, g2, h, aux,M0,M1, u

∗
1, u
∗
2. Note that fixing the variables u∗1, u

∗
2 implies

that the random coins r, r′ also become fixed. Now consider some α ∈ 〈g1〉. The probability
distribution of [v∗]7 is clearly uniform over 〈g1〉 conditioned on K and thus the event [v∗]7 = α
will have probability 1/q. The event [v∗]6 = α suggests that the following two equations must
be satisfied; the first is due to the conditioning on K:[

1 w
r wr′

] [
z1
z2

]
=

[
logg1 h

logg1(α/Mb)

]
This system’s determinant is w(r′ − r), and is therefore nonzero from our conditioning:

r = logg1 u
∗
1, r′ = logg2 u

∗
2, and r 6= r′. It follows that the probability of the event [v∗]6 = α

must be 1/q since there are exactly q choices for selecting z1, z2, and regardless of the choice of
b, precisely one of these choices will be the solution to the system.

Next we consider the equivalence of the two conditioned games G6 and G7 based on the
events K ∧ ([v∗]6 = α) and K ∧ ([v∗]7 = α) respectively. These conditioned games are now
quite different. In the conditioned game G6, the variables z1, z2 are subject only to the the
first equation of the system and b is a random bit uniformly distributed over {0, 1}. In the
conditioned game G7, the random variables z1, z2 are not random since they must assume with
probability 1/2 one of the two values allowed by the above system (one is selected for b = 0 and
one is selected by b = 1). Progressing through the steps in both games however, one can verify
that neither game employs z1, z2 other than through z = z1 + wz2 after Step 8. The variable
z is clearly identical in both conditionings (equal to logg1 h) and the conditional probability
distribution of b in G6 is still uniform over {0, 1}. The two games are therefore equivalent and
by the second game playing lemma, Prob[T6] = Prob[T7].

Now let Coll6 be the event Coll as defined in Modification 6: Coll6 is the event that the
adversary produces a collision for H in the second stage. Define a similar event Coll7 in game
G7.

Consider now a modified game G6, called G′6 that operates exactly as G6 except in Step 10:

10. If A finds a collision 〈u1, u2, v〉 of H against 〈u∗1, u∗2, v∗〉
in Step 9 return 1 else 0

We similarly define a modified game G′7. It then holds for the winning probabilities of the
two games, that Prob[T ′6] = Prob[Coll6] and Prob[T ′7] = Prob[Coll7]. By the same arguments used
in the transition from G6 to G7, we find Prob[Coll6] = Prob[Coll7].

Modification 8. We perform our final modification by changing Step 7 of game G′7 to obtain
G′8.
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7. u∗1 ← gr1; u∗2 ← gr
′

2 r, r′
r←− [q]

Here we are essentially reversing Modification 5. Note that r, r′ are not explicitly used in
either G′7 or G′8, so a direct application of the second game-playing lemma proves

|Prob[T ′7]− Prob[T ′8]| = |Prob[Coll7]− Prob[Coll8]| ≤ 2−s(λ)+1

since this is the statistical distance between the two distributions.
We can now bound Prob[Coll8]. Recall that in game G′8, the challenge 〈u∗1, u∗2, v∗〉 is a random

triple over 〈g1〉 × 〈g1〉 × 〈g1〉, so we can turn the game G′8 into a collision finder for the hash
function H. Using this, we see

Prob[Coll8] ≤ AdvGGenUOWHF(λ).

Closing argument. From the above, we can see that Prob[T7] = 1/2; moreover, we proved
Prob[Coll] ≤ 2−s(λ)+1 + AdvGGenUOWHF(λ) through the sequence of games G′6, G

′
7, G

′
8. Based on this,

our sequence of games allows us to conclude∣∣∣∣Prob[T0]− 1

2

∣∣∣∣ ≤ AdvGGenDDH(λ) + AdvGGenUOWHF(λ) + (Q1 +Q2 + 3) · 2−s(λ)+1.

This is negligible in λ sinceQ1, Q2 are polynomial bounded in λ and AdvGGenDDH(λ) and AdvGGenUOWHF(λ)
are assumed to be negligible in λ (by Assumptions 1 and 2). This proves the following theorem.

Theorem 12.3.1. The CS public-key cryptosystem satisfies IND-CCA2 security under Assump-
tions 1 and 2.

13 Privacy Primitives

The cryptographic primitives we have discussed thus far are insufficient to solve problems con-
cerning the privacy of a system’s users. Indeed, privacy in the sense of anonymity is a different
requirement than any previous issue we have dealt with. In light of this, we turn our discussion
toward hiding the identity of participants in a system. In this section, we focus on two important
cryptographic primitives involved in privacy applications: blind signatures and mix-servers.

13.1 Blind Signatures

A blind signature is a scheme that allows a signer to authenticate a document without having
any information about the document itself. The two primary objectives of a blind signature are
unforgeability and blindness, where blindness refers to the property that any information in a
document is kept private from a signer. In this section, we introduce the Chaum blind signature,
which was introduced by David Chaum in 1982.

The Chaum blind signature is based on the Full-Domain Hash RSA signature scheme. We
saw in Section 7.6 that a message M is signed by H(M)d = σ and a message-signature pair
(M,σ) is verified by testing if σe ≡ H(M) mod n. We now adapt this for a blind signature.

Definition 13.1.1. Let e be a prime, M a string, n an RSA modulus, and H a hash function.
A two-move blind signature scheme is a tuple of algorithms (Blind,Sign,Unblind,Verify) such
that

• The blinding algorithm Blind: Given M , a random number r
r←− Zn, and the public key

pk = (n, e), output M ′ = reH(M) mod n.

• The signing algorithm Sign: Given a blinded message M ′ and the secret key sk = d, output
a digital signature σ′ = (M ′)d mod n.

• The algorithm Unblind: Given a signature σ′ of a blinded message M ′, compute σ =
σ′r−1 mod n.
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• The verification algorithm Verify: For any (M,σ), test if σe = (σ′r−1)e = M ′r−e =
H(M) mod n. If equality holds, return True=1; otherwise return False=0.

Figure 22 describes the general formulations of these algorithms for a user U and a signer S.

U(pk) S(sk)

M ′ = Blind(pk,M)
−−−−−−−−−−−−−−−→

σ′ = Sign(sk,M ′)
←−−−−−−−−−−−−−−−−

σ = Unblind(σ′)

Verify(pk,M, σ)
?
= 1

Figure 22: The Chaum blind signature generation.

Definition 13.1.2. The blindness property states that for any two messages M0,M1 and all
algorithms A

|Prob[A(Blind(pk,M0)) = 1]− Prob[A(Blind(pk,M1)) = 1]| ≤ ε.

When ε is negligible, we say there is statistical blindness; when ε = 0, there is perfect
blindness, i.e. the distributions of Blind(pk,M0) and Blind(pk,M1) are statistically or perfectly
indistinguishable.

Theorem 13.1.1. The Chaum blind signature satisfies statistical blindness.

Proof. If there are two messages M0 and M1 such that reH(M0) ≡ (r′)eH(M1) mod n for
r, r′ ∈ Zn, then r ≡ r′(H(M1)/H(M0))1/e mod n. This uses the assumption that H(Mi) ∈ Z∗n
and the fact that a ≡ b mod n if ae ≡ be mod n. The latter we get from gcd(n, e) = 1.

E-Cash System Based on the Chaum Blind Signature

When buying something with paper money or checks, a merchant can hold the money and verify
it is legitimate. As society has moved away from using tangible money, new methods have arisen
to validate electronic transactions. Systems such as e-cash are now used to instigate a third
party in a transaction to ensure both the buyer and merchant are honest and protected.

Consider the following three-party scenario: the bank, the bank user Alf, and the merchant
Mark. Suppose Alf decides to buy something at Mark’s shop. He has an account with the
bank, so he goes and identifies himself as an authentic account holder. He hands the bank an
envelope containing a serial number, which the bank signs without opening. The bank has a
certain denomination designated as an e-coin , say $10. They then take $10 from Alf’s account
and add an e-coin to the pool- a common collection area where Alf’s e-coin is indistinguishable
from any other. Meanwhile, Alf walks down the street to Mark’s shop, picks out what he wants
and hands Mark the signed envelope. In order to complete the transaction, Mark goes to the
bank to verify that the serial number and signature are good. The bank takes an e-coin from
the pool and gives $10 to Mark.

First note that Alf is free to make as many copies of the envelope’s signature as he wishes.
The bank however, only accepts a given signature once, rendering any duplicates useless. Second,
the value of an e-coin is pre-determined. In order to purchase something, Alf may need the bank
to sign multiple envelopes in order to have adequate e-coins in the pool. Here the pool ensures
that the bank cannot determine who or how much Alf paid.

We can represent this in a more formal manner. Suppose the bank publishes e, n, and H to
all merchants. Let U be a user, M a merchant, and B the bank. To withdraw an e-coin from
an account,
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1. U identifies himself to the bank.

2. U selects a random number rnd.

3. U selects r
r←− Zn.

4. U calculates y = reH(M‖rnd) mod n and sends y to B.

5. B moves the value of an e-coin from U ’s account and puts an e-coin in the pool.

6. B replies to U with σ = y1/e mod n.

7. U computes coin = r−1σ mod n and outputs 〈rnd, coin〉 as the e-coin.

In Step 4, r is used for blinding. By dividing by r in Step 7, the blinding is removed.
To make a payment, U gives 〈rnd, coin〉 to M. Before providing the purchased services,

M checks that (coin)e ≡ H(M‖rnd) mod n. If it is valid, M submits 〈rnd, coin〉 to the bank
through an authenticated channel.

When the bank receives 〈rnd, coin〉, it checks that the pair is good, then looks to see if it
already exists in the deposited e-coin database. If it has not been used, the bank moves the
value of the e-coin from the pool to M’s account.

In this setting, it is impossible to link a payment to the corresponding withdrawal.

E-Voting Scheme Based on the Chaum Blind Signature

We can similarly construct an electronic voting (e-voting) scheme based on the Chaum blind
signature. The three parties involved are the administrator A, the voters Vi, and the counter C.

The administrator A checks that Vi has the right to vote. Then, using some blinding factor,
Vi blinds his ballot vi into v′i and asks A to produce the signature σ′i for v′i. To cast his ballot,
Vi retrieves the unblinded signature σi of vi from σ′i. He verifies that (vi, σi) is a valid ballot-
signature pair using the administrator’s verification key. If Verify returns True, Vi sends (vi, σi)
to the counter C through an anonymous communication channel.

The counter C uses the administrator’s verification key to check the ballot-signature pair
(vi, σi) and then adds it to a list. After all voters vote, C counts the votes, publishes the list,
and announces the results.

This scheme prevents the administrator from seeing who voted for whom. It does not however,
disguise this information from the counter. To solve this privacy issue, we introduce a mix-server.

13.2 Mix-Servers

A mix-server or mixer is a network that shuffles a group of messages and passes them to the
receiver in a permuted order. The primary purpose for such a mechanism is to provide “sender
privacy”; that is, it ensures that the entity receiving the mix-server’s output cannot discern who
transmitted a message. In some sense, the mix-server separates a set of senders from a single
receiver and attempts to conceal the sender-message relationships.

The messages themselves may reveal some information about the input vector or permutation.
If each message is authenticated, the task of the mix-server becomes Sisyphean. More generally, if
the receiver can obtain information about the input vector, he may be able to discern the sender-
message relationship. For instance, suppose all messages contain the answer to a petition: one
sender answers Yes and all others answer No. No matter how the mixer permutes the messages,
the receiver can successfully identify the sender he suspects to have answered Yes.

Given that the receiver (the adversary in this setting) gets each message, the mix-server’s
security goal does not include data privacy. We want a pubic key mechanism to eliminate
private channels between the mix-server and the senders. To achieve this, we use the ElGamal
encryption scheme:
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Mix-Server
〈pk, sk〉

E(pk,Mi) D(sk, ci)

Senders

M1

M2

...
Mn

−→
−→

−→

Mρ(1)

Mρ(2)

...
Mρ(n)

−→
−→

−→

c1
c2
...
cn

−→
−→

−→

· · · · · ·
· · · · · ·

· · · · · ·

−→
−→

−→

Mπ(1)

Mπ(2)

...
Mπ(n)

Receiver

Input Output

Figure 23: A mix-server with random permutations ρ, π on {1, . . . , n}.

G(1λ) : 〈pk, sk〉 ← G(1λ)

x
r←− Zm, h = gx mod p

pk = 〈〈p,m, g〉, h〉
sk = x

E(pk,M) : M ∈ 〈g〉
r

r←− Zm
compute G = gr mod p, H = hrM mod p
output 〈G,H〉

D(sk, g,H) : compute M = H/Gx mod p
output M

Figure 23 illustrates how a mix-server interacts with the senders and receiver. An adversary
can view the original messages {Mi}, the “input” wires {ci}, and the “output” wires

{
Mπ(i)

}
.

His goal is to find the relationship between the input and output wires, i.e. the permutation ρ
that assigns messages to users.

In addition to constructing a public-key scheme, we have several objectives in creating an
effective mix-server.

1. We want to relax our trust assumptions on the mixer for situations when the mixer is
adversarial. Specifically, we must ensure that a mixer outputs authentic messages, not
those of its own creation.

2. The receiver should be unable to make correlations between messages and senders.

3. We want to prohibit a mix-server and receiver from forming a coalition; otherwise all
privacy is lost. One method is to use multiple mix-servers: privacy is more convincing
when there is evidence of at least one non-adversarial mixer.

4. And finally, we want the ability to scale a receiver to a mix-server, creating a second
mix-server. Repeatedly doing so composes a sequence of servers and improves privacy.

Zero-Knowledge Proof of Correct Decryption

Suppose the receiver asks a mixer to prove it properly decrypted the ciphertext c = 〈G,H〉. The
mixer could publish M and demonstrate it knows the secret key x such that Gx = H/M . This
amounts to providing a proof of knowledge for the discrete logarithm of logG(H/M), which is
an unconvincing argument. Indeed, a malicious mixer could fabricate a message by choosing a
random x′ and setting M = Gx

′
/H. A stronger argument requires that the mixer prove the

equality of two logarithms: logG(H/M)
?
= logg h. The corresponding zero-knowledge proof is

given in Figure 24.
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P V
t

r←− Zn
u = gt, U = Gt

u, U
−−−−−−−−−−−−−−−−−−−−→

c
←−−−−−−−−−−−−−−−−−−−−

s = t+ cx
s

−−−−−−−−−−−−−−−−−−−−→ gs
?
= uhc

Gs
?
= U(H/M)c

Figure 24: A zero-knowledge proof that verifies if x = logg h = logGH/M .

Once we verify that the mix-server correctly decrypted a ciphertext, we want to prove that
each output message M ′i is the correct decryption of one of the inputs; namely that there is a
permutation π such that for each ciphertext ci = 〈Gi, Hi〉 with D(sk, ci) = M ′i , there is some j
for which M ′i = Mπ(j). Define the language

L =
{
〈c1, . . . , cn,M ′1, . . . ,M ′n〉 : there is (π, sk) such that D(sk, ci) = M ′π(i) for all 1 ≤ i ≤ n

}
.

L is in NP . Given π and sk, one can verify if a string is valid in polynomial-time. Our
membership problem can therefore be reduced to a Hamiltonian cycle. While this works, the
resulting graph can be quite large. A more effective method is to first define the language

L′ =
{
〈c1, . . . , cn,M ′1, . . . ,M ′n〉 : there is an sk such that for all i there is a j with D(sk, ci) = M ′j

}
This language can also be written as

L′ =

n∧
i=1

 n∨
j=1

D(sk, ci) = mj

 .

Note that L ( L′ since L′ does not require that all original messages appear, i.e., in L’, a
mixer could set D(sk, ci) = M ′j for all i and a fixed j. L mandates that all decrypted messages
be distinct, and therefore all plaintexts must be distinct (no ciphertext can be decrypted in
two ways). Although the two languages are different, we can use the disjunction of two zero-
knowledge proofs on L′ to verify a solution.

We require that all plaintexts be distinct. Depending on the system, this may not naturally
occur. We can enforce distinctness however, by inserting randomness into each input. For
example, consider the modified encryption E(pk,M) = (gr, hr(M‖s)) for a random string s.
The receiver now must check that all opened plaintexts have different s-components and accept
only if this is the case. Assuming s is sufficiently long (at least 128 bits), a collision happens
with probability 2−64 by the birthday paradox. If follows that a collision is likely to reveal a
misbehaved mixer.

Serial Composition of n Mixers

For added security, we can cascade a set of n mixers to encrypt messages layer by layer. This
introduces the problem of encrypting ciphertext, which is inefficient in the public-key setting
because it causes expansion in the message size. Here we present an efficient solution to this
dilemma.

Suppose in a set of n mixers, Mixer i has the public key pki = 〈〈p,m, g〉, hi〉 and secret key
ski = xi. A message M is encrypted as 〈gr, (h1h2 · · ·hn)r(M‖s)〉 = 〈G,H〉. If Mixer 1 decrypts
the ciphertext 〈G,H〉 as 〈G,H/Gx1〉, the output is a valid compound ciphertext for mixers
2, 3, . . . , n. The problem is that we fixed the first part of the ciphertext, potentially making the
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input-output relationship traceable: the mixer is not really permuting. We have to allow mixers
to re-encrypt each message. The decryption of Mixer i is then,

Di(xi, G,H) =

〈
gr
′
G,

 H

Gxi

n∏
j=i+1

hr
′

j

〉 .
To prove the mix-server is now faithfully following the protocol, we consider the case of

2 mixers. Suppose the first mixer decrypts 〈G,H〉 = 〈gr, (h1h2)rM〉 and outputs 〈G′, H ′〉 =
〈Ggr′ , hr′2 H/Gx1〉. If the mixer can simultaneously prove three logs, gx1 = h1, gr

′
= G′/G, and

hr
′

2 /G
x1 = H ′/H, it successfully proves it is faithful.

14 Distributing Trust

14.1 Secret sharing

In a secret sharing scheme , a set of players posses pieces of information that combine to form
a common “secret”. Unless the number of involved players exceeds a certain threshold, noone
can reconstruct or obtain any information about the secret.

Consider a simple example. Suppose a dealer D wants to distribute a secret S ∈ Zq to a set

of players Pi for i = 1, . . . , n. The dealer randomly selects n− 1 numbers s1, . . . , sn−1
r←− Zq and

sets the nth as sn = S − s1 − . . .− sn−1 mod q. D then distributes si to Pi as his share of the
secret.

In the special case of n = 2 players, s1 + s2 = S, where s1
r←− Zq and s2 = S − s1 mod q.

The probability distributions of s1, s2 are the same: both s1 and s2 are randomly selected from
Zq so neither P1 nor P2 can recover S without the help of the other player. In a similar fashion,
one can show that any n− 1 players cannot recover a secret shared by n players.

14.2 Shamir’s Secret Sharing Scheme

Define p(X) = a0+a1X+· · ·+at−1Xt−1 for ai ∈ Zq. If we know t points (z0, y0), (z1, y1), . . . , (zt−1, yt−1),
where yi = p(zi), we can build the system

1 z0 · · · zt−10

1 z1 · · · zt−11
...

...
. . .

...
1 zt−1 · · · zt−1t−1



a0
a1
...

at−1

 ≡

y0
y1
...

yt−1

 mod q. (16)

Denote (16) by ZA ≡ Y mod q. If the determinant of Z is nonzero, we can solve A = Z−1Y
and find the coefficients of p(X) using Lagrange interpolation. This method forms the basis for
Shamir’s secret sharing scheme :

Suppose there are n shareholders and a secret threshold of t, i.e. fewer than t shareholders
cannot recover any of the secret. The dealerD defines p(X) such that the constant term a0 = p(0)

is the secret and all other coefficients are randomly selected: a1, . . . at−1
r←− Zq. D distributes

si = p(i) to each shareholder Pi for i = 1, . . . , n.
When t players meet, they can solve a system similar to (16). Denote this subset of players

as
{
P ′j
}

for j = 1, . . . , t, where each of the t contributing players has the corresponding share s′j .
Using Lagrange interpolation, they can obtain a0 = λ1s

′
1 + . . .+λts

′
t, where each λj is a publicly

constructible Lagrange coefficient. Note that with this method, t − 1 players cannot compute
any information about a0, but t players can retrieve the entire secret.

14.3 Distributing Decryption Capabilities

We now return to the ElGamal encryption scheme with public key pk = 〈〈p,m, g〉, h〉 and secret
key sk = x such that h = gx. Using a secret sharing scheme, we can disperse the secret key
among n players such that any t (or more) can together obtain x and decrypt the ElGamal

[Draft of February 28, 2020]



14.3 Distributing Decryption Capabilities 85

ciphertext. The secret x however, can only be used once: after its reconstruction it is available
to all players. We now introduce threshold decryption , which enables x to be reused.

Let 〈G,H〉 = 〈gr, hrM〉 be an ElGamal ciphertext with h = gx and x = p(0), where p(X) is
defined as in Section 14.2. Distribute si = p(i) to the ith shareholder Pi for i = 1, . . . , n.

When a group of t players P ′j , j = 1, . . . , t, decide to decrypt 〈G,H〉, each P ′j publishes

Gj = Gs
′
j .

P ′1 P ′2 · · · P ′t
s′1 s′2 · · · s′t

G1 G2 · · · Gt

Using the Lagrange coefficients, the t players compute

Gλ1
1 Gλ2

2 · · ·G
λt
t = Gλ1s

′
1 · · ·Gλts

′
t

= Gp(0)

= Gx

= grx

= hr

This implies that the plaintext M can be obtained by

M = H/Gλ1
1 Gλ2

2 · · ·G
λt
t .

Application to E-Voting

Definition 14.3.1. Given two groups (X,+) and (Y, ·)11, a group homomorphism is a func-
tion ϕ : X −→ Y such that for all α, β ∈ X,

ϕ(α+ β) = ϕ(α) · ϕ(β).

This implies ϕ must also preserve identities and inverses.
Define (X,+) to be the plaintext group and (Y, ·) to be the cipertext group where · is some

group operation on ciphertexts. Given C1, C2 ∈ Y such that C1 = E(pk,M1) and C2 = E(pk,M2)
for M1,M2 ∈ X, we call E a homomorphic encryption function if

E(pk,M1 +M2) ≈ C1 · C2
12.

As an example, consider a variation of ElGamal encryption. Let Zm be the plaintext group
(under addition modulo m) and let 〈Z∗p,Z∗p〉 be the ciphertext group for a prime p. Take any

ciphertext 〈G,H〉 = 〈gr, hr+M 〉 with M ∈ Zm. To decrypt 〈G,H〉, compute H/Gx = hM and
search through all possible choices of

{
hM1 , hM2 , . . . , hMm

}
. This encryption function satisfies

the desired homomorphic properties, although it is only efficient for small m.
Using the homomorphic properties of ElGamal, we can create a threshold decryption scheme

for an e-voting system with n voters. Suppose the ith voter provides identification and submits
〈G(i), H(i)〉 = 〈gri , hri+Mi〉, where Mi ∈ {0, 1} (No=0, Yes=1). Let A =

∑
ri and B =

∑
Mi

for i = 1, . . . , n. Observe that 〈
n∏
i=1

G(i),

n∏
i=1

H(i)

〉
= 〈gA, hAhB〉

is a ciphertext that encrypts the number of voters who answered Yes: B =
∑n
i=1Mi.

The question is if 〈G(i), H(i)〉 is a valid ciphertext for Mi ∈ {0, 1}. Note that if Mi = 0,
then logg h = logG(j)H(j) and if Mi = 1, then logg h = logG(j)H(j)/h. Since g, h,G(i), H(i)
are public information, Vi can prove one of these discrete logarithms in the disjunction of two
zero-knowledge proofs.

We now turn our attention to (publicly) verifiable secret sharing and dealer-less secret sharing,
in which special versions of secret sharing are applicable.

11For clarity, we write X using additive notation and Y using multiplicative notation, even though the group
operations on X and Y may very well be different than the usual addition and multiplication operations.

12The symbol ≈ represents an identical distribution
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14.4 Publicly Verifiable Secret Sharing

In a threshold decryption scheme, problems can occur when one of the t contributing players
incorrectly publishes his part. The t − 1 honest players are blocked from the secret while the
malicious player is able to reconstruct it. To prevent this, we instigate a third party or judge to
which each shareholder must prove the validity of their share. We first present a solution that
weakens the security of the scheme.

Suppose the dealer publishes

〈ga0 , ga1 , . . . , gat−1〉 = 〈V0, V1, . . . , Vt−1〉.

If si corresponds to the ith shareholder, notice

V0V
i
1 · · ·V i

t−1

t−1 = ga0ga1i · · · gat−1i
t−1

= gp(i)

= gsi ,

so the ith shareholder can present the publicly verifiable value gsi to a judge. This solves our
dilemma, but weakens the security because an adversary can similarly construct a value and
present it to a judge.

A better solution uses zero-knowledge proofs. Note that G, g, gsi are public and the ith player
claims Gi = Gsi . One can verify this by showing logGGi = logg g

si . To prove he is honest,
the ith player then provides a zero-knowledge proof for the discrete logarithms, as discussed in
previous sections.

14.5 Distributing the Dealer

We have a major issue in the previous schemes in that the dealer knows the secret, in addition
to each player’s share. We want to avoid any secret constructions and all-knowing parties at the
beginning of the process. To accomplish this, we distribute the dealer’s responsibilities among
the shareholders.

Let Pi select Si as his secret. Pi uses his private polynomial pi(X) = ai,0 + ai,1X + . . . +
ai,t−1X

t−1 to compute Si,j = pi(j). He gives Si,j to Pj as the jth share of Si. Pi then publishes
Vi,0, Vi,1, . . . , Vi,t−1.

The jth shareholder now collects S1,j , S2,j , . . . , Sn,j from the other players and computes
his share as sj =

∑n
i=1 Si,j . The shared secret is

∑n
i=1 pi(0) and the verification values are

Vk =
∏n
i=1 Vi,k for k = 0, . . . , t − 1. Note that no non-sharing entity knows the secret, but the

secret can still be recovered by any attempt of t users.

15 Broadcast Encryption

In a system with users in [N ] = {1, . . . , N}, a broadcast encryption scheme enables a party
called the Center to send a message to a select subgroup of [N ], excluding whomever he chooses.
A common example of broadcast encryption is visible in cable companies. They distribute
various cable packages through a common network such that subscribers can only obtain the
package they paid for.

Let R ⊆ [N ] be the subset of users excluded from a transmission. We define the enabled
set E = [N ] \ R to be the intended recipients of a ciphertext. In this section, we assume all
encryption schemes are symmetric: E(k,M) and D(k, c).

After the network initializes the system with Init(key), the Center sends the ciphertext C to
all enabled users UEi with Ei ∈ E in such a way that no URi can decrypt M with Ri ∈ R .

The trivial solution is to give every user a distinct key ki. If |R| = r, the Center encrypts
M with each of the N − r appropriate keys. The ciphertext C = 〈E(kE1 ,M), . . . , E(kEN−r ,M)〉
then has length N − r. To decrypt the message, each enabled user tries their key on every entry
in the ciphertext. While this works, it requires C to be very long. One of our primary goals is
to minimize the length of the ciphertext.
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UE1

Init(key) UR1

Center
M, R // C = 〈E(key,M)〉

;;

//

##

UE2

...

UEN−r

Figure 25: A broadcast encryption scheme where users UEi can decrypt M , but URj cannot,

with Ei ∈ E and Ri ∈ R. R denotes the description of R.

Consider an alternate solution. Instead of giving a key to each user, give a key to every
subset of [N ]. This is called the poset P of [N ]13. To send a message, the Center now only
needs the key corresponding to the set E.

Example. Take N = 3 and R = {2} as seen in Figure 26. Each node corresponds to a key, so
User 1 has keys for {1} , {1, 2} , {1, 3} , {1, 2, 3} and User 3 has keys for {3} , {1, 3} , {2, 3} , {1, 2, 3}.
Note that {1, 3} is the only set whose key is available to Users 1 and 3, but not User 2. This
is also the set E. In Figure 26, nodes containing R have been left open to indicate that the
Center cannot use the corresponding keys. While there are four solid nodes, only the node for
E = {1, 3} is needed.

{1} {2} {3}

{1,2} {2,3}{1,3}

{1,2,3}

0

Figure 26: All possible subsets of [N ] for N = 3 and R = {2}.

Using the poset enables the Center to send a ciphertext with a minimal number of keys.
The largest possible ciphertext has length λ + r log r where λ = |E(key,M)|. This solution is
therefore most helpful when r is small. Recall that |P | = 2N , so each user needs 2N−1 keys.

The method of using posets is inefficient in that each user must store the maximum number
of keys. Our goal is now to find a medium between minimizing the number of keys required by
the Center to encrypt a message and minimizing the number of keys required by each user to
decrypt a message.

13The term poset comes from “partially ordered set”
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15.1 Complete Binary Trees

One effective way to minimize both the ciphertext size and user memory space is to use complete
binary trees.

Definition 15.1.1. A complete binary tree (CBT) is a tree diagram in which every level is
full and all levels have the same depth14. Any CBT has 2t leaves for some t ∈ Z+.

 

Root

Nodes

Leaves

Figure 27: A complete binary tree with N = 8 leaves and depth 3.

Lemma 15.1.1. In a complete binary tree with N leaves, there are 2N − 1 nodes.

Proof. We prove this by induction on N . When N = 1, it holds trivially that there is 2− 1 = 1
node. Assume if N = 2t, there are 2(2t)− 1 = 2t+1 − 1 nodes.

Now take any CBT with N = 2t+1 leaves. By removing the root, we divide the tree into two
symmetric complete binary subtrees, each with 2t leaves. By our inductive assumption, each
subtree has 2t+1 − 1 nodes. The entire tree then has

2(2t+1 − 1) + 1 = 2(2t+1)− 1 = 2N − 1

nodes.

Figure 28 illustrates how N = 8 users can be represented in a CBT, where each leaf denotes
one user. Each node then corresponds to a key assigned to the subset of users hanging below
that node.

It is clear that any CBT has depth logN (base 2), so each user needs 1 + logN keys. To
communicate with all N users, the Center only needs the root’s key to encrypt his message.

In an ideal situation, the members of R form a complete subtree, so r = 2x. When excluding
R from a transmission, the center refrains from using the root of R’s subtree, and any ancestral
node the subtree hangs from. Each user then needs a maximum of logN − log r = log(N/r)
keys. This is illustrated in Figure 29, where open nodes denote excluded keys.

As R grows, or disperses into different subtrees, users may need up to r log(N/r) keys. This
implies that the ciphertext will also have length between r logN and r log(N/r). This is a
superior method for broadcast encryption.

16 Elliptic Curve Cryptography

Thus far, we have focused only on cryptosystems built over multiplicative groups. In this section,
we discuss new systems and revisit old systems built over elliptic curves, which are additive
Abelian groups.

14The depth of a tree is the number of steps it takes to move from a leaf to the root. Visually, this is the
number of segments in the path from leaf to root.
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Figure 28: A complete binary tree representing N = 8 users in a broadcast encryption scheme.

}
1 + logN 

1+logr  

R

Figure 29: Excluding R when R forms a single complete subtree.

In recent years, there has been a huge movement toward understanding elliptic curves for
cryptographic purposes. There are two readily apparent benefits for using curves over modular
groups. The first is their cost efficiency. A 200-bit elliptic curve provides the same security as
a 1,000-bit modular group. The second reason is that there are no know ways to generalize the
attacks against the discrete logarithm problem on a modular group to an attack on an elliptic
curve; although this may be due to our present lack of understanding of elliptic curves.

16.1 Elliptic Curves

While it requires very advanced mathematics to formally define an elliptic curve, they are easily
dealt with abstractly, based on their additive structure and pairing properties. Perhaps the
simplest definition for an elliptic curve is the set of solutions to a generalized cubic equation.

We are primarily interested in curves over a finite field F . When F is not of characteristic15

2 or 3, we can write any elliptic curve as a plane algebraic curve defined by16

Y 2 = X3 + aX + b, (17)

where a, b ∈ F .
As an additive group, any two points on a curve add to produce a third point on the curve.

This form of addition is geometrically interpreted differently from the previous notion of vector
addition. On an elliptic curve, adding points P1 and P2 is viewed as projecting a line between
P1 and P2 to form the point of intersection with the curve. The point of intersection is the
resulting point P3.

15The characteristic of a ring is the smallest positive integer n such that n · 1 = 0. If no such n exists, the
ring is said to have characteristic zero. Fields always have prime characteristic.

16Equation (17) is a special form of the Weierstrass equation for curves not over fields of characteristic 2 or 3.
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Using this idea, the additive inverse of a point P = (x, y) is −P = (x,−y). The identity 0 is
called the point at infinity , and therefore sometimes also denoted as ∞. For any curve E, the
property must hold that P1 + P2 + P3 = 0 for any points P1, P2, P3 ∈ E.

We have three possibilities when adding P1 = (x1, y1) and P2 = (x2, y2):

P1 + P2 =


0 x1 = x2 or y1 = −y2
P2 = P2 + P1 P1 = 0

P3 = (x3, y3) otherwise.

Formally, P3 is calculated as

x3 = m2 − x1 − x2 and y3 = y1 +m(x3 − x1),

where the slope m between P1 and P2 is

m =

{
(y2 − y1)/(x2 − x1) P1 6= P2

(3x21 + a)/(2y1) P1 = P2.

When P1 = P2, the line connecting the “two” points is the line tangent to P1.

16.2 Bilinear Maps

One key concept in elliptic curve cryptography is that of a pairing. A pairing is a function that
uses two points on a curve as inputs, and outputs an element of some multiplicative Abelian
group. Two very useful pairings are the Weil and Tate pairing functions, which we will not
discuss in detail [?].

One of the major pairing-based constructions is that of the bilinear map.

Definition 16.2.1. Let G1 and G2 be two groups of prime order q17. An admissible bilinear
map

e : G1 ×G1 −→ G2

satisfies three properties:

• Bilinearity : For all P,Q ∈ G1 and all a, b ∈ Z∗q , it holds that e(aP, bQ) = e(P,Q)ab.

• Non-Degeneracy : e does not map all pairs in G1 × G1 to the identity in G2. That is,
for all nonzero P ∈ G1, e(P, P ) 6= 1. This implies that if P is a generator of G1, e(P, P )
generates G2: 〈e(P, P )〉 = G2.

• Computability : There is an effective algorithm to compute e.

The existence of such an admissible bilinear map is proven by the Weil and Tate pairings [?]. In
the following examples, we take G1 to be an additive group of points on an elliptic curve, and
G2 to be a finite field.

Using the paring function, we can prove several complexity implications [6].

Theorem 16.2.1. The discrete logarithm problem in G1 is no harder than the discrete logarithm
problem in G2.

Proof. Take P,Q ∈ G1. The discrete logarithm problem in G1 amounts to finding an a ∈ Zq such
that Q = aP . Let α = e(P, P ) and β = e(P,Q). By the bilinearity of e, β = e(P, P )a = αa. By
non-degeneracy, α and β both have prime order q, so this establishes a reduction of the discrete
logarithm problem into G2.

Theorem 16.2.2. The decisional Diffie-Hellman problem is easy in G1.

17For distinction, we write G1 using additive notation and G2 using multiplicative notation. In general, the
group operations of G1 and G2 may be different from the usual addition and multiplication.
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Proof. To solve DDH, one must distinguish between the distributions of 〈P, aP, bP, cP 〉 and

〈P, aP, bP, abP 〉 where a, b, c
r←− Z∗q and P is a random point in G1. We can build a distinguisher

that breaks the DDH assumption as follows:

1. Compute g1 = e(aP, bP ) and g2 = e(P, cP ).

2. If g1 = g2, then the tuple is of the form 〈P, aP, bP, abP 〉.

To see this, notice
g1 = e(aP, bP ) = e(P, P )ab = e(P, abP ).

So when c = ab mod q, g1 = g2. The distinguisher can therefore tell the tuples apart.

16.3 Bilinear Diffie-Hellman Assumption

While DDH is not hard in G1, the computational Diffie-Hellman problem can still be hard; that
is, given a random 〈P, aP, bP 〉, it is believed to be hard to find abP ∈ G1. A helpful variant of
CDH is the bilinear Diffie-Hellman problem.

Definition 16.3.1. The goal of the bilinear Diffie-Hellman problem (BDH) in 〈G1,G2, e〉
is to compute e(P, P )abc when given 〈P, aP, bP, cP 〉 for some a, b, c ∈ Z∗q . An adversary A has
advantage ε in solving BDH if

AdvA = Prob[A(P, aP, bP, cP ) = e(P, P )abc] ≥ ε.

The hardness of BDH depends on an appropriate choice of security parameters in G2 [?].

Definition 16.3.2. A BDH parameter generator is a randomized, polynomial-time com-
putable algorithm G that on input λ, outputs a prime q, the description of two groups G1,G2

of order q, and the description of an admissible bilinear map e : G1×G1 −→ G2. We denote the
output of G on the security parameter λ as G(1λ) = 〈q,G1,G2, e〉.

Definition 16.3.3. A BDH parameter generator G is said to satisfy the bilinear Diffie-
Hellman assumption provided

AdvAG (λ) = Prob

[
A(q,G1,G2, e, P, aP, bP, cP ) = e(P, P )abc :

〈q,G1,G2, e〉 ← G(1λ),

P
r←− G∗1, a, b, c

r←− Z∗q

]
is negligible for all PPT algorithms A. Informally, the BDH assumption considers it hard to
compute e(P, P )abc when given 〈P, aP, bP, cP 〉.

16.4 One-Round, 3-Part Key Agreement Scheme

The most immediate way to use elliptic curves is in the Diffie-Hellman key exchange protocol and
ElGamal. As we just showed, the security of DDH fails under the pairing function, so we must
modify our protocols under the BDH assumption. One interesting example of a key agreement
that benefits from this modification is the one-round, 3-party key agreement scheme introduced
by Joux in 2000. This was the first scheme enabling a third honest party to contribute to the
exchange and legally obtain a key. It was also the first scheme based on Diffie-Hellman that
required only one round of exchanged data.

There are three parties, A,B,C with secrets a, b, c respectively. Assume there is an admissible
bilinear map e between the groups G1 × G1 and G2 available to all parties and P is a known
generator of G1. In the Joux scheme,

1. A sends aP to B,C.

2. B sends bP to A,C.

3. C sends cP to A,B.
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• Steps 1-3 are performed in one round of parallel message exchanges.

4. A computes e(bP, cP )a = e(P, P )abc.

5. B computes e(aP, cP )b = e(P, P )abc.

6. C computes e(aP, bP )c = e(P, P )abc.

• Steps 4-6 are performed simultaneously.

Using this protocol, all parties obtain the common key K = e(P, P )abc, which is secure assuming
BDH is hard

16.5 Identity-Based Encryption

Identity-based encryption (IBE) was first imagined by Shamir in 1984. His original motivation
was to develop a public-key encryption scheme that enabled users to send messages encrypted
with publicly known strings. For example, Alice can send an encrypted email to Bob, using
his email address as the public key. To decrypt his message, Bob needs to obtain his private
decryption key from an independent third party, called the Private Key Generator (PKG). One
perk is that Alice can send her message before Bob obtains his private key. She can also encrypt
her email using both Bob’s email address and a time frame; Bob then cannot open the email
until the specified time.

In 2001, Boneh and Franklin proposed the first practical IBE scheme using the Weil pairing
ê on an elliptic curve [?]. In the concrete model, G1 is a subgroup of additive points of an elliptic
curve over a finite field, E/Fp, and G2 is a subgroup of the multiplicative group of a finite field
Fp2 . The security of the IBE system is proven to be IND-ID-CCA under the BDH assumption;
we define IND-ID-CCA security later in Section 16.5.1.

The BasicPub IBE Scheme

Boneh and Franklin’s full IBE scheme is a variant of ElGamal. To prove IND-ID-CCA security,
Boneh and Franklin reduced their scheme to several simpler encryption schemes first and proved
the security of those models. The simplest of the reduced encryption schemes is BasicPub, which
is defined as follows.

Key-generation. For input 1λ, run G to obtain the system parameters 〈q,G1,G2, ê〉 where
q is a λ-bit prime, G1 and G2 are groups of order q, and ê is an admissible bilinear map
ê : G1 ×G1 −→ G2. Choose a random generator P of G1. Set s

r←− Z∗q as the system-wide secret

key and Ppub = sP as the system-wide public key. Choose Qid
r←− G∗1. Let H2 be a cryptographic

hash function H2 : G2 −→ {0, 1}n for some n. The public key is 〈q,G1,G2, ê, n, P, Ppub, Qid, H2〉.
The private key is did = sQid ∈ G∗1.

Encryption. Given a message M ∈ {0, 1}n, choose r
r←− Z∗q and return C = 〈rP,M ⊕H2(gr)〉,

where g = ê(Qid, Ppub) ∈ G∗2.

Decryption. Given a ciphertext C = 〈U, V 〉, use did to compute V ⊕H2(ê(did, U)) = M .

Suppose we encrypt a message M with public key id to obtain 〈rP,M ⊕ H2(gr)〉 for some
r ∈ Z∗q . Call this ciphertext C = 〈U, V 〉. The decryption algorithm works as follows,

V ⊕H2(ê(did, U)) = V ⊕H2(ê(sQid, rP ))

= V ⊕H2(ê(Qid, P )rs)

= V ⊕H2(ê(Qid, sP )r)

= V ⊕H2(gr)

= M ⊕H2(gr)⊕H2(gr)

= M
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BasicPub is not a true IBE scheme since each identity is an arbitrary random string. Here
an adversary only attacks one user, he can never obtain the secret key for other users. This
however lays the groundwork for the next scheme, BasicIdent, which is IBE.

Before we discuss BasicIdent, let us examine the security of BasicPub. While Boneh and
Franklin proved a much stronger result, here we show that BasicPub is IND-CPA secure under
the bilinear decisional Diffie-Hellman assumption (BDDH).

Definition 16.5.1. For any 〈q,G1,G2, e〉 produced from G, the bilinear decisional Diffie-
Hellman assumption claims that an adversary cannot distinguish between tuples of the form
〈P, aP, bP, cP, e(P, P )abc〉 and 〈P, aP, bP, cP, e(P, P )d〉 with more than a negligible probability

when a, b, c, d
r←− Z∗q .

Proof of Security. As in Section 12.1.1, we can model the security as a sequence of games.

The IND-CPA Game.

Game G0 on Input 1λ Random Variables

1. 〈q,G1,G2, ê〉 ← G(1λ; ρ) ρ← Coins

2. Ppub ← sP s
r←− Z∗q

3. Qid
r←− G∗1

4. 〈aux,M0,M1〉 ← AH2(·)[qH2
](stage1, q,G1,G2, ê, n, P, Ppub, Qid, H2; ρ1) ρ1

r←− Coins1
5. U∗ ← rP r

r←− Z∗q
6. V ∗ ←Mb ⊕H2(ê(Qid, Ppub)

r) b
r←− {0, 1}

7. b∗ ← A(stage2, aux, U∗, V ∗; ρ2) ρ2
r←− Coins2

8. if b = b∗ return 1 else return 0

The random oracle H2(·) is queried qH2 times during Step 3. When given a query Xi, it
answers with H2(Xi) = Hi.

Modification 1. We first modify Step 3 in G0 to obtain G1.

3. Qid ← tP t
r←− Z∗q

Since Qid is random in G0 and t is random in G1 (and therefore tP is also random) the
probability distributions of [Qid]0 and [Qid]1 are uniform, proving Prob[T0] = Prob[T1].

Modification [2]. Here we modify H2 as a random oracle in Step 4 to obtain G2. H2 now
maintains a list of all queries and answers, ListH2 = {〈Xi, Hi〉} for i = 1, . . . , qH2 , and operates
as

1. Given Xi such that 〈Xi, Hi〉 ∈ ListH2
for some Hi ∈ {0, 1}n, return H2(Xi) = Hi.

2. Given Xi such that 〈Xi, H〉 /∈ ListH2 for some H ∈ {0, 1}n, choose Hi
r←− {0, 1}n, enter

〈Xi, Hi〉 ∈ ListH2
, and return H2(Xi) = Hi.

Again, this is a trivial adjustment so Prob[T1] = Prob[T2].

Modification 3. We modify Step 6 now to obtain G3.

6. V ∗ ←Mb ⊕H2(ê(P, P )d) b
r←− {0, 1}, d r←− Z∗q

Note that the variables r, s, t, d are not explicitly used anywhere in G2 or G3. Moreover, for
any parameters 〈q,G1,G2, ê〉 produced by G, the triple 〈P, rP, sP, tP, e(P, P )rst〉 is distributed
as a BDDH tuple in game G2 and as a random tuple in game G3. From the third game-playing
lemma then, we have that |Prob[T2]− Prob[T3]| ≤ AdvABDDH(λ).

Modification 4. For our last modification, we alter Step 6 of G3 to obtain G4.

6. V ∗
r←− G∗2
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Define F to be the event that ê(Qid, Ppub)
r ∈ ListH2

. Clearly, if A does not make a query
about ê(Qid, Ppub)

r, Prob[T3∩¬F ] = Prob[T4∩¬F ]. Assuming #G1 ≥ 2λ, the first game-playing
lemma yields

|Prob[T3]− Prob[T4]| ≤ qH2

2λ
.

Closing Argument. Through the previous series of modifications, it is now clear that Prob[T5] =
1/2 (b is never used before Step 8). To conclude the proof, note that the sequence of games
reveals ∣∣∣∣Prob[T0]− 1

2

∣∣∣∣ ≤ AdvABDDH(λ) +
qH2

2λ
.

Since both AdvABDDH(λ) and
qH2

2λ
are assumed to be negligible in λ, this is also negligible.

This proves the following theorem.

Theorem 16.5.1. The BasicPub encryption scheme satisfies IND-CPA security under the bilin-
ear decisional Diffie-Hellman assumption in the random oracle model.

The BasicIdent IBE Scheme

Proving IND-CPA for BasicPub is a comparatively weak result for an IBE system. The adversary
is not allowed to become a member of the system and himself have an identity. We now expand
to IND-ID-CPA security, where an adversary may make private key extraction queries to the
PKG, call it K. Suppose K has the system-wide secret key skA, then we can model IND-ID-CPA
security as the following game.

The IND-ID-CPA Game.

Game GIND-ID-CPA on Input 1λ Random Variables

1. 〈param, skA〉 ← G(1λ; ρ) ρ
r←− {0, 1}λ

2. 〈aux, id,M0,M1〉 ← AK(skA,·)(stage1, aux, param; ρ1) ρ1
r←− {0, 1}λ

3. if id ∈ Computed or M0 = M1 then stop

4. C ← E(param, id,Mb) b
r←− {0, 1}

5. b∗ ← AK¬id(skA,·)(stage2, aux; ρ2) ρ2
r←− {0, 1}λ

11. if b = b∗ return 1 else return 0

We now shift our attention to a stronger IBE system, BasicIdent:

Setup. For input 1λ, run G to obtain the system parameters 〈q,G1,G2, ê〉 where q is a λ-bit
prime, G1 and G2 are groups of order q, and ê is an admissible bilinear map ê : G1×G1 −→ G2.
Choose a random generator P of G1. Set s

r←− Z∗q as the system-wide secret key and Ppub = sP
as the system-wide public key. Let H1 and H2 be a cryptographic hash functions such that
H1 : {0, 1}∗ −→ G∗1 and H2 : G2 −→ {0, 1}n for some n.

Extract. For any string id ∈ {0, 1}∗, compute Qid = H1(id) ∈ G∗1 and set did = sQid as the
private key.

Encryption. Given a message M ∈ {0, 1}n, compute Qid, choose r
r←− Z∗q , and return C =

〈rP,M ⊕H2(grid)〉, where gid = ê(Qid, Ppub) ∈ G∗2.

The primary difference between BasicIdent and BasicPub is that BasicIdent uses a well-
defined hash function to determine Qid based on the user’s identity; whereas BasicPub selects
Qid at random. Because of this, an IND-ID-CPA attack on BasicIdent can be reduced to an
IND-CPA attack on BasicPub.

Theorem 16.5.2. BasicIdent is IND-ID-CPA secure under the BDH assumption in the random
oracle model.

One way to prove security is to assume H1 behaves as a random oracle. Bohen and Franklin
do this in the Random Oracle Model, using the IND-CPA security of BasicPub and the random
oracle behavior of H1. It is also possible to rely on the weaker BDH assumption with the random
oracle.
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The IND-ID-CCA Security Model

The standard security model for an IBE system is IND-ID-CCA, where the adversarial goal is
the chosen ciphertext attack. Under such a model, we assume the adversary can obtain the
private key didj for any identity idj not under attack. The adversary can also make decryption
queries 〈idj , Cj〉 on ciphertexts Cj of his choosing. Both the private key extraction queries and
decryption queries can be made adaptively, depending on previous results. In general, IND-ID-
CCA can be modeled as the following two-phase game:

The IND-ID-CCA Game.

Game GIND-ID-CCA on Input 1λ Random Variables

1. 〈param, skA〉 ← G(1λ; ρ) ρ
r←− {0, 1}λ

2. 〈aux, id,M0,M1〉 ← AK(skA,·),Dec(K(skA,·),·)(stage1, aux, param; ρ1) ρ1
r←− {0, 1}λ

3. if id ∈ Computed or M0 = M1 then stop

4. C ← E(param, id,Mb) b
r←− {0, 1}

5. b∗ ← AK¬id(skA,·),Dec¬(id,C)(K(skA,·),·)(stage2, aux; ρ2) ρ2
r←− {0, 1}λ

11. if b = b∗ return 1 else return 0

This is the ideal model for security because it allows the adversary to make two separate
rounds of queries; one round before submitting the challenge values and one round after receiving
the challenge ciphertext C. After A receives C, he may alter C to make C ′. Since C ′ 6= C, he
may then make decryption queries in Step 5. If the scheme is IND-ID-CCA secure, the adversary
cannot obtain any additional information about b from decrypting the modified ciphertext.

Definition 16.5.2. A public key identity based encryption scheme is IND-ID-CCA secure if for
all PPT adversaries A,

AdvAIND-ID-CCA(λ) =

∣∣∣∣Prob[b = b∗]− 1

2

∣∣∣∣
is negligible.

17 Simulation Based Security

In previous sections, we defined security by playing a sequence of games with an adversary. One
problem with this method is our lack of ability to evaluate a game’s sufficiency. We have no
guarantee all important cases are covered; we may not yet know what cases are important.

An alternate way to evaluate security is through a simulation-based method. The goal is
now to define the ideal a given protocol is intended to approximate and find a way to analyze if
the protocol realizes that ideal. This model, in its fullest generality, was developed by Canetti
in 2001 [5].

If a protocol realizes its ideal functionality, the agreement between the protocol and its ideal
is maintained through a variety of settings. To capture these diverse scenarios, we introduce
the notion of an environment that describes a particular setting involving an application of
the protocol. While simulation-based security is a very broad area of study, this section we only
address it in the narrow context of key exchange protocols.

In general, an environment Z creates parties P1, P2, . . . and enables each to perform a proto-
col. Z also creates an adversary A and allows him to do bad things, including corrupting parties
and using their capabilities. For example, in Figure 30 A corrupts P2, so now P2 shares all of
his information with A.

Any key exchange protocol is defined by the description of two types of parties: initiators
I and responders R. The environment dictates what and when I and R do anything. The
session ID sid contain the names of both I and R, and any auxiliary information about their
communications (e.g. a session number, a timestamp, etc.). The template for the operations of
these programs is as follows.

• Whenever program I is given input (InitiatorStart, sid), I initiates a key exchange protocol
with a party R, whose name is determined by sid.
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1 2 3
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Figure 30: An environment Z with users Pi and adversary A.

• When the responding party R is contacted by the initiating party, it produces the output
(ResponderAck, sid) in acknowledgment.

• When the responder R receives input (ResponderStart, sid), it follows the protocol and
responds to the initiator.

• After a number of rounds of communication, the initiator and responder terminate and
return the output (Key, sid, k). (Depending on the particular protocol instantiation, either
party may terminate first.)

In an execution of the protocol, the environment Z can create multiple parties of this de-
scription and witness the course of execution. The environment also creates an adversary A
that intercepts all communication between I and R and, if allowed by Z, corrupts and takes full
control of any of these parties. The environment and adversary communicate in an arbitrary
manner.

All of the above describes what happens in the “real world” environment. We assume in
the real world that all communication between parties takes place through the adversary A.
We further assume A cannot modify messages from an honest party. This amounts to using an
authenticated communication link between the parties. Under a suitable assumption, a digital
signature can be used to create such links, but this is not the focus of this section.

Next we define the “ideal world” environment. In an ideal world, there is an ideal functionality
FKE which operates as follows.

• Upon receiving an input (InitiatorStart, sid) from party I, verify sid = (I,R, sid′) for some
identity R, record I as active, record R as the responder, and send a public delayed output18

(ResponderAck, sid) to R.

• Upon receiving (ResponderStart, sid) from R, verify R is recorded as the responder, record
R as active, and then notify the adversary.

• After receiving a message (Key, sid, P, k∗) from the adversary, for P ∈ {I,R} do:

– If P is active and neither I nor R is corrupt: if there is no recorded (Key, sid, k),
randomly choose k and record (Key, sid, k). Output (Key, sid, k) to P .

– Else, if P is active and either I or R is corrupt, output (Key, sid, k∗) to P .

– Else, P is not active: do nothing.

17.1 The 2DH Key Exchange Protocol

To exhibit the differences between the real and ideal worlds, recall the Diffie-Hellman key ex-
change protocol from Section 6.1. Here we refer to this as the 2DH key exchange protocol. In

18A public delayed output is a mechanism to return an output to parties after “asking” an adversary for
permission. This gives the adversary the opportunity in the ideal world to block the output, should it wish to do
so.
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the real world, Z first creates an adversary A and instructs him to pass all information through
Z. In this case, the adversary is less trivial and performs actions beyond being merely “passed
through”. Referencing Figure 31, the protocol now operates as follows.

1. Z sends (InitiatorStart, (I,R)) to I to initiate a key exchange.

2. I randomly generates x and sends a = gx to R.

3. A may block the message, ending the protocol; otherwise a passes to R.

4. R sends (ResponderAck, (I,R)) to Z to acknowledge he was contacted by I.

5. Z sends (ResponderStart, (I,R)) to R.

6. R randomly generates y and sends k = ay to Z.

7. R sends b = gy back to I.

8. A may block the message, ending the protocol; otherwise b passes to I.

9. I sends k = bx back to Z.

Z

RI

A
1

2 3

4 5

6

78
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Figure 31: The 2DH key exchange protocol in the real world simulation.

Now consider the operation of the environment in an ideal world. Here the initiator and
responder become transparent entities and their operations are substituted by the ideal func-
tionality FKE . To distinguish between FKE ’s functionality as I and R, we write FKE(I) and
FKE(R) respectively. Note however, that there is really only one function. In the real world
simulation, the environment is in full communication with the adversary. To convince Z of the
existence of an adversary in the ideal world, we create an adversary simulator S that runs the
adversary A internally. The ideal functionality still communicates with the adversary, but this
is not the same adversary as it is restricted from corrupting other parties.

Using Figure 32, the 2DH key-exchange protocol in the ideal world is as follows.

1. Z sends (InitiatorStart, (I,R)) to FKE(I) to initiate a key exchange.

2. S is activated through the public delayed output. It may perform actions to present a
picture similar to the real world to the environment. For example, S may simulate I to
randomly generate x and send a = gx to R.

3. A may block the message, ending the protocol; otherwise a passes to R. If a passes to R,
then S decides that the public delayed output should go through and returns control to
the functionality FKE .

4. FKE(R) sends (ResponderAck, (I,R)) to Z to acknowledge he was contacted by FKE(I)

5. Z sends (ResponderStart, (I,R)) to FKE(R).

6. FKE(R) randomly generates k∗ and sends k∗ to Z.
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7. S is again activated through the public delayed output. It may perform actions to present
a picture similar to the real world to the environment. For example, S may simulate R
and generate y, compute b = ay and send b to I.

8. A may block the message, ending the protocol; otherwise b passes to I. If b passes to I,
then S decides that the public delayed output should go through and returns control to
the functionality FKE .

9. FKE(I) sends k∗ back to Z.
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Figure 32: The 2DH key-exchange protocol in the ideal world simulation.

Definition 17.1.1. We say an ideal key exchange is secure if for all real world adversaries A,
there exists an ideal world adversary S such that for all environments Z, Z cannot tell the
difference between the real world execution with A and the ideal world execution with S.

The entire appeal of the above security definition is that any real world adversary is trans-
formed into an ideal world adversary without the environment knowing the difference. This is
meaningful as a security definition because real world adversaries can corrupt parties and do bad
things without restriction; whereas ideal world adversaries may also do bad things, but only in
prescribed ways defined in the ideal functionality. In the real world, the adversary is stronger
than the parties. The reverse is true in the ideal world.

In 2DH, Z receives k = gxy as the key in the real world, and a random k∗ in the ideal
world. Assuming no parties are corrupted, distinguishing between the two worlds amounts to
solving DDH. While we showed in Section 6.4 that the Diffie-Hellman key exchange protocol was
secure against passive adversaries, it does not remain so under simulation-based security. This
does not necessarily mean the proof in Section 6.4 is incorrect, only that it solely considered
eavesdropping adversaries.

To illustrate how 2DH fails under simulation-based security, consider what happens when Z
allows the adversary to corrupt a party. The environment that attacks 2DH operates as follows.

1. After receiving the key from R, block the message between Steps 7 and 8. Tell A to corrupt
I and return the contents of I (namely x).

2. If a = gx and k = bx, output 1 else 0.

In the real world, Z always outputs 1. In the ideal world, S has to prove it committed itself
to some x′ such that a = gx

′
and k∗ = bx

′
. Since k∗ is randomly generated, this is equivalent to

breaking the discrete logarithm problem.
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Alice Bob

Select x

Compute a← gx
a

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Select y
Compute b← gy, k ← ay

Erase y
b

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compute k ← bx

Erase x
Ack

−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Output k Output k

Figure 33: The 2mDH key exchange protocol.

17.2 The 2mDH Key Exchange Protocol

We can modify 2DH so that it satisfies simulation-based security. The primary problem in
the previous case is that x was stored in the initiator’s memory. Now consider the 2mDH key
exchange protocol in Figure 33.

Now should an environment corrupt the initiator (Alice) after receiving the key from the
responder (Bob), no information can be obtained about x. This provides the indistinguishablility
necessary between the real and ideal worlds.

18 Private Information Retrieval

Assume that there is a database DB = 〈x1, ...., xn〉, stored in a remote server (or servers).
Consider the setting where a user U makes a query qi to retrieve an item xi from DB. A Private
information Retrieval (PIR) protocol, is a protocol where the queries U makes are formed so
that the correct item is retrieved without revealing the position of xi in DB to the (potentially
malicious) server.

18.1 Information Theoretic PIR

The notion was introduced in 1995 by Chor, Goldreich, Kushilevitz and Sudan in the information
theoretic setting. An (information theoretic) PIR protocol must satisfy the following properties:

1. Correctness: when U makes query qi, he receives xi from the server.

2. Privacy: Let Q be a query function that takes as input an index in [n] and the user’s
random coins r and let Q be the query space. Then, for every distinct indices i, j ∈ [n]
and q ∈ Q:

Prob
r

[Q(i, r) = q] = Prob
r

[Q(j, r) = q].

Namely, the queries of the user hide the position of the corresponding item against unbounded
adversaries. A trivial solution to the problem is to ask the server to send the whole database
to the user. Indeed, if U receives DB, then he can easily extract xi, while the server cannot
distinguish in which of all the items U is interested. However, this is a very inefficient protocol, as
the communication and user-side storage overhead are unbearable for large databases. Therefore,
the interesting solutions are the ones that allow the server’s response to be sublinear to the size
of the database. Chor, Goldreich, Kushilevitz and Sudan have proven that no sublinear PIR
protocol exists in the information theoretic setting, as long as the database is stored in a single
server.
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18.2 Computational PIR

In 1997, Kushilevitz and Ostrovsky showed that single-server PIR is possible in the compu-
tational setting, by relaxing the privacy definition. A computational PIR (CPIR) protocol is
private if the queries for different items are indistinguishable by a polynomial time bounded
adversary . Formally, for every PPT adversary A, database size n polynomial to the security
parameter λ and distinct indices i, j ∈ [n]:

| Prob
r

[A(1λ, Q(i, r)) = 1]− Prob
r

[A(1λ, Q(j, r)) = 1] |= negl(λ).

We will present a sublinear CPIR protocol for the case where each item is a single bit, i.e.
xi ∈ {0, 1} for i = 1, ..., n. We view the database as a s × t matrix of bits, where n = s · t.
Assume a mapping from indices in [n] to matrix entries, e.g. i 7−→ (a, b) = (di/te, i mod t). We
will need the following notion:

Definition 18.2.1. (XOR-homomorphic encryption) An asymmetric encryption scheme
(G, E ,D) where the message space M is {0, 1} is XOR-homomorphic if for any public key pk
and M,M ′ ∈M:

E(pk,M) · E(pk,M ′) = E(M ⊕M ′).

Let (G, E ,D) be an XOR-homomorphic scheme. The CPIR protocol works as follows:

1. U generates a public key and secret key pair 〈pk, sk〉 for (G, E ,D). He creates ciphertexts
y1, . . . , yt, such that yb is an encryption of 0, while for all j 6= b, yj is an encryption of 1.
U sends pk and y1, . . . , yt to the server.

2. Upon receiving pk and y1, . . . , yt, the server computes for every row σ ∈ [s] a number
zσ ∈ Z∗N as follows: for j = 1, . . . , t it computes

wσ,j =

{
y2j , if the item in entry (σ, j) is 0
yj , if the item in entry (σ, j) is 1

Then it computes zσ =
∏t
j=1 wσ,j , for σ = 1, . . . , s and responds with z1, . . . , zs.

3. Using z1, . . . , zs, U retrieves the item in entry (a, b) by deciding 0 if D(sk, za) = 0 and 1
otherwise.

It is obvious that during an execution of the protocol, (1 + t) + s strings (the public key and
t + s ciphertexts are transmitted. Assume, without loss of generality, that the public key and
the ciphertexts have size λ bits and s = t =

√
n, where n = λc for some c > 2. Then the total

communication cost is (1 + s + t) · λ = (1 + 2 · n 1
2 ) · n 1

c = Θ(n
1
2+

1
c ) = ω(n) bits, i.e. sublinear

to the size of the database. Next, we prove the two properties of the CPIR protocol.

Correctness: By the construction of y1, . . . , yt, if j 6= b, then

wσ,j =

{
E(0) · E(0), if the item in entry (σ, j) is 0
E(0), if the item in entry (σ, j) is 1

Thus, by the XOR-homomorphic property, for j 6= b, wσ,j is an encryption of 0 for j 6= b. On
the other hand,

wσ,b =

{
E(1) · E(1), if the item in entry (σ, b) is 0
E(1), if the item in entry (σ, b) is 1

Therefore, by the XOR-homomorphic property, wσ,b is an encryption of 0 if and only if the item
in entry (σ, b) is 0. By the construction of zσ and he XOR-homomorphic property, zσ is in an
encryption of 0 if and only if wσ,b is an encryption of 0. Therefore, zσ is an encryption of 0 if
and only if the item in entry (σ, b) is 0 and especially, za is an encryption of 0 if and only if the
item in entry (a, b) is 0.
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Privacy: We will show that if (G, E ,D) is IND-CPA secure, then the CPIR protocol is private.
Let A be a PPT adversary that breaks the privacy of the CPIR protocol. Namely, for two
distinct entries (a, b) 6= (a′, b′) and a non-negligible function α(·):

Prob
r

[A(1λ, Q((a, b), r)) = 1] = θ and Prob
r

[A(1λ, Q((a′, b′), r)) = 1] ≥ θ + α(λ).

We observe that the protocol works in an identical way for entries that are in the same column,
therefore it must hold that b 6= b′. We construct an algorithm B against the IND-CPA security
of (G, E ,D). B invokes A and acts as a user of the protocol as follows:

1. On input pk, B sets challenge messages 0, 1 and receives a ciphertext y that is either an
encryption of 0 or an encryption of 1. B creates t − 2 encryptions of 0, denoted as yj ,

where j /∈ {b, b′}. It chooses randomly a position b̃ ∈ {b, b′} and sets yb̃ = y. Finally, for

the remaining position b̃′ ∈ {b, b′} \ b̃ it creates another encryption of 0 and sets it as yb̃′ .
It sends pk and y1, . . . , yt to A.

2. If the chosen position is b′, then B answers by flipping A’s output. If the chosen position
is b, then B returns A’s output.

The cases that B decides correctly are when: (i) it outputs 1 and y is an encryption of 1 and (ii)
it outputs 0 and y an encryption of 0.

Let E be the event that y is an encryption of 0. By definition of IND-CPA security, we have
that Prob[E] = 1/2. If E occurs, all y1, . . . , yt are encryptions of 0 for any choice of b̃. Therefore,

Prob[A(1λ, (pk, y1, . . . , yt)) = 1 | E ∧ b̃ = b] = Prob[A(1λ, (pk, y1, . . . , yt)) = 1 | E ∧ b̃ = b′] = φ.

So,

Prob[B = 0 | E] = Prob[̃b = b] · Prob[B = 1 | E ∧ b̃ = b] + Prob[̃b = b′] · Prob[B = 1 | E ∧ b̃ = b′] =

= 1/2 · (Prob[B = 0 | E ∧ b̃ = b] + Prob[B = 0 | E ∧ b̃ = b′]) =

= 1/2 · (φ+ (1− φ)) = 1/2,

(18)

by the description of B. On the other hand, if y is an encryption of 1, then a complete execution
of the CPIR is simulated where the query (pk, y1, . . . , yt) is made for the item in entry (a, b), if

b̃ = b or (a′, b′), if b̃ = b′. Therefore,

Prob[B = 1 | ¬E] = Prob[̃b = b] · Prob[B = 0 | ¬E ∧ b̃ = b] + Prob[̃b = b′] · Prob[B = 0 | ¬E ∧ b̃ = b′] =

= 1/2 · (Prob[B = 0 | ¬E ∧ b̃ = b] + Prob[B = 0 | ¬E ∧ b̃ = b′]) ≥
≥ 1/2 · ((1− θ) + θ + α(λ)) = 1/2 + α(λ)/2.

(19)

By (18),(19) we have that

Prob[B succeeds] = Prob[B = 0 ∧ E] + Prob[B = 1 ∧ ¬E] =

= Prob[E] · Prob[B = 0 | E] + Prob[¬E] · Prob[B = 1 | ¬E] ≥
≥ 1/2 · (1/2 + (1/2 + α(λ)/2)) = 1/2 + α(λ)/4,

hence B breaks the IND-CPA security of (G, E ,D).

18.3 An instantiation of a XOR-homomorphic asymmetric encryption
scheme.

Recall that for an integer N , the subgroup of all quadratic residues of Z∗N is QR(N) (see Defi-
nition 6.2.4). We will need the following statements:

[Draft of February 28, 2020]



102

Proposition 18.3.1. Let N = p · q, where p, q are primes. The following hold:

(i). It is easy to sample a random element y ∈ Z∗N that is not in QR(N).

(ii). If the factorization of N is known, then it is easy to decide whether an element y ∈ Z∗N is
in QR(N).

Proposition 18.3.2. Let N = p · q, where p, q are primes and NQR(p, q) be the set of elements
in Z∗N that are neither in QR(p) nor in QR(q). Then the following hold:

(i). |QR(N) ∪ NQR(p, q)| = |Z∗N |/2, i.e. for exactly half of the elements y ∈ Z∗N , either
y ∈ QR(N) or y ∈ NQR(p, q).

(ii). |QR(N)| = |NQR(p, q)|.

Definition 18.3.1. (Quadratic Residuosity Assumption). Let N = p · q, where p, q are
random λ-bit primes. For, a random element in y ∈ QR(N)∪NQR(p, q), the Quadratic Residue
Problem is to decide whether y is in QR(N). The Quadratic Residuosity Assumption states that
for every PPT adversary A, the probability that A solves the Quadratic Residue Problem is no
more than 1/2 + negl(λ).

The following asymmetric encryption scheme is XOR-homomorphic and has IND-CPA secu-
rity under the Quadratic Residuosity Assumption.

• G(1λ): generate two random λ-bit primes p, q. Set 〈pk, sk〉 = 〈N = p · q, (p, q)〉.

• E(N,M): choose a random y that is not in QR(N). This can be done efficiently due to
proposition 18.3.1.(i). If M is 0, encrypt as y2 mod N and if M is 1 encrypt as y mod N .

• D((p, q), c): Decrypt to 0 if c is in QR(N), otherwise decrypt to 1. The decryption is easy
due to Proposition 18.3.1.(ii).

19 The bitcoin protocol

In 2008 a person or a group of people self-identified as Satoshi Nakamoto publicized the bitcoin
protocol. Bitcoin is a cryptocurrency, in the sense that it makes use of cryptography and it
can be used to make payments. Compared to traditional electronic payment systems, bitcoin
does not have a central authority that issues money and validates transactions. Instead, trust
is distributed and the different parties involved in the bitcoin system take part of this trust.

However, distributing trust comes with a number of challenges. A distributed payment
system must protect its users from double spending. Since no central authority is in charge of
validating transactions, a malicious user can try to spend the same amount of money twice. This
problem is addressed by the bitcoin protocol by ensuring that all parties have the same view of
the history of transactions.

Next, we give an outline of the bitcoin protocol. The basic element of the bitcoin protocol is a
transaction. A transaction determines the flow of money: a payer transfers an amount of money
to a payee. Payer and payee are identified by a randomly generated public key which makes
bitcoin a pseudonymous payment system: anyone can use it without exposing any information
about his identity besides a pair of randomly generated cryptographic keys. Transactions are
processed in blocks. A sequence of blocks is called a chain, and ordering is ensured through the
use of a hash function. Formally, let B1 = 〈s1, x1, r1〉 represent a block, where s1 is the hash of
the previous blocks, x1 is the set of transactions in this block and r1 is a nonce. Assuming H
is a cryptographic hash function, for the next block B2 = 〈s2, x2, r2〉 in the chain it should hold
that s2 = H(s1, H(x1, r1)). This way for a chain containing blocks B1, . . . , Bn, the probability
that some malicious entity finds some block B′i such that B1, . . . , B

′
i, . . . , Bn is a valid chain is

equal to the probability that it finds a collision in the hash function i.e. negligible.
Another novelty of bitcoin compared to older payment systems is that it is permissionless,

anyone can take part in the payment infrastructure. A known attack against permisionless
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systems is the sybil attack. Since these systems lack identity infrastructure, an attacker can
make many ‘fake’ identities in order to bias decisions taken by the system. Bitcoin addresses
this problem by the use of proofs-of-work. A proof-of-work is a proof that someone has done
computational work at some point in the past with regard to some specific context. In bitcoin,
this is captured by the requirement that the hash of a block must be less or equal to some value
T i.e. H(s1, H(x1, r1)) < T in order for 〈s1, x1, r1〉 to be a valid block. T is called the difficulty
of block B1. Difficulty is recalculated every 2016 blocks in order to ensure that one block is
being produced every ten minutes. Block miners are incetivized to spend computational power
by being rewarded bitcoins for each block they mine.

Finally, in order to defend against double spending, the bitcoin protocol defines a ‘chain
selection rule’ so that all parties converge to the same transaction history. This rule specifies
that all parties must select and mine on the most difficult chain that they have received or mined
so far. If there is a tie, the chain that was received earlier should be selected. It has been proven
that under suitable assumptions this mechanism leads to a common transaction history for all
players.

19.1 The q-bounded synchronous setting

We will describe a simple model one can use to argue about the security properties of bitcoin.
The model is a multiparty synchronous communication setting (similar to Canetti’s formulation
of “real world” execution [5]) with the relaxation that the underlying communication graph is
not fully connected and messages are delivered through a “diffusion” mechanism that reflects
Bitcoin’s peer-to-peer structure.

Parties. Each party P is represented by an interactive Turing machine having the following
communication tapes:

• input tape: a read-only tape from where P gets his input (for example transactions trans-
mitted in the bitcoin network)

• receive tape: a read-only tape from which P receives messages

• output tape: a write-only tape where P writes his output

• broadcast tape: a write-only tape which P uses to broadcast messages

As stated before, the network is considered to be synchronous, i.e. the protocol takes place
in successive rounds. Synchronicity is modeled by having the players share a read-only vari-
able called “round”. In each round, parties are able to read their input tape (Input()) and
receive tape (Receive()), perform some computation that will be suitably restricted and issue
a Broadcast message that is guaranteed to be delivered to all parties in the beginning of the
next round.

Proofs-of-Work. In order to capture the parties’ limited ability to produce proofs-of-work
(POW), we assume that all parties have access to a random oracle H(·). We consider parties
that can ask a bounded number of queries to the oracle. A random oracle is called q-bounded
if each player asks at most q times the oracle a hash query at each round. Also notice, that if a
party is trying to find a block of difficulty T , the probability of success is T/2κ, where κ is the
length of the output of the hash.

Environment. In order to specify an execution of a protocol Π in this system we add two
more participants, the environment and the controller. The controller manages the scheduling
of the activations of the participants in the execution. It also increases the round variable at the
appropriate time. The environment Z provides the parties’ inputs, and also receives the parties’
outputs. The environment may provide input to a party at any round and may also modify
that input from round to round. It is not permitted any queries to H(·). The rationale for this
is that we would like to bound the “CPU power” of the adversary to be proportionate to the
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number of parties it controls, while making it infeasible for them to be aided by external sources
or by transferring the hashing power potentially invested in concurrent or previous protocol
executions. It follows that in our analysis we will focus on the “standalone” setting, where a
single protocol instance is executed in isolation. The execution proceeds as follows:

1. The environment receives as input the output and broadcast tapes of the players. It then
writes at their input tape. If this is the first round, the environment sets the round variable
to 1, otherwise it increases it by 1.

2. The controller writes the concatenation of the messages (possibly reordering them accord-
ing to a probability distribution based on some network characteristics) in the broadcast
tapes to the incoming communication tape of each player.

3. Each player P1 to Pn is executed one after another. If a player writes a query to the
shared tape with the oracle, the random oracle is activated in order to respond and then
the player is executed again.

The adversary. The adversary is modeled by another Turing machine that takes as input the
broadcast tapes of the players. The adversarial model in the network is “rushing”, meaning that
in any given round the adversary gets to see all honest players’ messages before deciding his
strategy, and, furthermore, also allows the adversary to change the source information on every
message. Note that the adversary cannot change the contents of the messages nor prevent them
from being delivered. Effectively, this parallels communication over TCP/IP in the Internet
where messages between parties are delivered reliably, but nevertheless malicious parties may
“spoof” the source of a message they transmit and make it appear as originating from an
arbitrary party (including another honest party) in the view of the receiver. In this setting we use
Broadcast as the message transmission command that captures the “send-to-all” functionality
allowed by our communication model. Note that an adversarial sender may abuse Broadcast
and attempt to confuse honest parties by sending and delivering inconsistent messages to them.

Additionally the adversary has at his disposal qt queries to the q-bounded oracle. The order
of the execution is altered as follows to include the adversary:

1. The environment takes as input the output and broadcast tapes of the players and the
output of the adversary. It then writes at their input tape. If this is the first round the
controller sets the round variable to 1, otherwise it increases it by 1.

2. The adversary is activated next. It obtains the contents of all broadcast tapes and for each
player, he writes a list of messages in the incoming communication tape in any order he
wants. Each list must include all messages placed in the broadcast tapes of honest players
in the previous round.

3. Each player P1 to Pn is executed one after another. If a player writes a query to the
shared tape with the random oracle, the oracle is activated in order to respond and then
the player is executed again.

4. The adversary is activated next. It performs qt queries, and terminates by writing some-
thing to its output tape if it wants.

We assume that all executions are static, i.e. all players are spawned in the first round an no
one is deleted. Further, note that because of the unauthenticated nature of the communication
model the parties may never be certain about the number of participants in a protocol execution.

We refer to the above restrictions on the environment, the parties and the adversary as the
q-bounded synchronous setting.

19.2 The core lemma

As discussed earlier honest parties try to have the same view of the history of transactions. An
event that helps them achieve this goal is a uniquely successful round, i.e. a round where only
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one honest player succeeds in mining a block. Unless the adversary publishes some other block
of his own, a uniquely successful round forces all honest players to the same chain in the next
round. Thus, it is important for the number of uniquely successful rounds to be greater than
the number of blocks mined by the adversary in a fixed interval of rounds.

Let the random variable Xi be 1 if round i is uniquely successful and 0 otherwise. Assume
that Pr[Xi = 1] = γ and for i 6= j, Xi is independent of Xj . Let random variable Zi,j be 1 if the

adversary succeeds in his j-th query in the i-th round. Assume E[
∑qt
j=1 Zi,j ] = β and without

loss of generality let {Zi,j}i,j∈N be independent and identically distributed. We can now state
the lemma we are going to prove.

Lemma 19.2.1. Assume γ > (1 + δ)β, for some δ ∈ (0, 1). Then, for any s ∈ N, the probability
that

∑s
i=1Xi is less than (1 + δ/2)

∑s
i=1

∑qt
j=1 Zi,j is negligible in s.

Proof. Let X =
∑s
i=1Xi and Z =

∑s
i=1

∑qt
j=1 Zi,j . Since X1, . . . , Xs and Z1,1, . . . , Zs,qt are i.i.d

Bernoulli random variables we can apply the Chernoff bound twice.

Pr[X ≤ (1− δ/8)γs] ≤ e−γsδ
2/128 ≤ negl(s) (20)

Pr[Z ≥ (1 + δ/9)βs] ≤ e−βsδ
2/243 ≤ negl(s) (21)

By the union bound, the probability that any of those two events happens is also negligible in
s. Hence, the following sequence of inequalities holds with probability 1− negl(s):

X > (1− δ/8)γs ≥ (1− δ/8)(1 + δ)βs ≥ (1 + δ/2)(1 + δ/9)βs > (1 + δ/2)Z

The first and the last inequalities hold from the negation of Inequalities 20 and 21. The second
inequality holds from our assumption and the third inequality follows by simple calculations.
The lemma follows.

For more details regarding the modeling of Bitcoin and its security we refer to [7].
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